1,671 research outputs found

    Acute compartment syndrome of the hand in Henoch-Schonlein Purpura

    Get PDF
    An eight year old boy with Henoch-Schonlein Purpura (HSP) presented with acute compartment syndrome (ACS) of his left hand following arterial cannulation of his radial artery in intensive care unit. Emergency decompression and fasciotomy were performed. The authors report this first case in literature and discuss how HSP can be complicated by ACS and ways to prevent the latter from happening

    White light induced covalent modification of graphene using phenazine dye

    Get PDF
    Herein, we report a novel strategy for a covalent modification of graphene nanoplatelets with photoactive dyes. Functionalization of the graphene surface was carried out using white light to photochemically generate phenazine radicals and the reaction progress was followed up spectrophotometrically. Characterization of the modified material was carried out by FTIR, XRD, UV-vis absorption, fluorescence, Raman spectroscopy and SEM imaging. This hybrid material has improved solubility, shows an optical band gap of 1.95 eV and is highly emissive in the visible wavelength region

    Central Exclusive Production in QCD

    Get PDF
    We investigate the theoretical description of the central exclusive production process, h1+h2 -> h1+X+h2. Taking Higgs production as an example, we sum logarithmically enhanced corrections appearing in the perturbation series to all orders in the strong coupling. Our results agree with those originally presented by Khoze, Martin and Ryskin except that the scale appearing in the Sudakov factor, mu=0.62 \sqrt{\hat{s}}, should be replaced with mu=\sqrt{\hat{s}}, where \sqrt{\hat{s}} is the invariant mass of the centrally produced system. We confirm this result using a fixed-order calculation and show that the replacement leads to approximately a factor 2 suppression in the cross-section for central system masses in the range 100-500 GeV.Comment: 41 pages, 19 figures; minor typos fixed; version published in JHE

    Comorbid problems in ADHD: degree of association, shared endophenotypes, and formation of distinct subtypes: Implications for a future DSM

    Get PDF
    We aimed to assess which comorbid problems (oppositional defiant behaviors, anxiety, autistic traits, motor coordination problems, and reading problems) were most associated with Attention-Deficit/Hyperactivity Disorder (ADHD); to determine whether these comorbid problems shared executive and motor problems on an endophenotype level with ADHD; and to determine whether executive functioning (EF)-and motor-endophenotypes supported the hypothesis that ADHD with comorbid problems is a qualitatively different phenotype than ADHD without comorbid problems. An EF-and a motor-endophenotype were formed based on nine neuropsychological tasks administered to 816 children from ADHD-and control-families. Additional data on comorbid problems were gathered using questionnaires. Results indicated that oppositional defiant behaviors appeared the most important comorbid problems of ADHD, followed by autistic traits, and than followed by motor coordination problems, anxiety, and reading problems. Both the EF-and motor-endophenotype were correlated and cross-correlated in siblings to autistic traits, motor coordination problems and reading problems, suggesting ADHD and these comorbid problems may possibly share familial/genetic EF and motor deficits. No such results were found for oppositional defiant behaviors and anxiety. ADHD in co-occurrence with comorbid problems may not be best seen as a distinct subtype of ADHD, but further research is warranted

    Shock waves in strongly coupled plasmas

    Full text link
    Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS5AdS_5 space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks we find the dual metric in a derivative expansion and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular we find that, when the velocity of the fluid relative to the shock approaches the speed of light v1v\to 1 the penetration depth \ell scales as (1v2)1/4\ell\sim (1-v^2)^{1/4}. We compare the results with second order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.Comment: 47 pages, 8 figures; v2:typos corrected, references adde

    Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. METHODS: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. RESULTS: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(-) and TST(+) contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+) contacts (LTBI) compared to TB and TST(-) contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. CONCLUSIONS: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials

    Non-renormalizability of the HMC algorithm

    Get PDF
    In lattice field theory, renormalizable simulation algorithms are attractive, because their scaling behaviour as a function of the lattice spacing is predictable. Algorithms implementing the Langevin equation, for example, are known to be renormalizable if the simulated theory is. In this paper we show that the situation is different in the case of the molecular-dynamics evolution on which the HMC algorithm is based. More precisely, studying the phi^4 theory, we find that the hyperbolic character of the molecular-dynamics equations leads to non-local (and thus non-removable) ultraviolet singularities already at one-loop order of perturbation theory.Comment: Plain TeX source, 23 pages, 3 figures included; v2: typos corrected, agrees with published versio

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon

    Model of For3p-Mediated Actin Cable Assembly in Fission Yeast

    Get PDF
    Formin For3p nucleates actin cables at the tips of fission yeast cells for polarized cell growth. The results of prior experiments have suggested a possible mechanism for actin cable assembly that involves association of For3p near cell tips, For3p-mediated actin polymerization, retrograde flow of actin cables toward the cell center, For3p dissociation from cell tips, and cable disassembly. We used analytical and computational modeling to test the validity and implications of the proposed coupled For3p/actin mechanism. We compared the model to prior experiments quantitatively and generated predictions for the expected behavior of the actin cable system upon changes of parameter values. We found that the model generates stable steady states with realistic values of rate constants and actin and For3p concentrations. Comparison of our results to previous experiments monitoring the FRAP of For3p-3GFP and the response of actin cables to treatments with actin depolymerizing drugs provided further support for the model. We identified the set of parameter values that produces results in agreement with experimental observations. We discuss future experiments that will help test the model's predictions and eliminate other possible mechanisms. The results of the model suggest that flow of actin cables may establish actin and For3p concentration gradients in the cytoplasm that could be important in global cell patterning
    corecore