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1 Introduction

Numerical simulations in lattice field theory are based on stochastic processes that produce

random sequences of representative field configurations. It is often useful to interpret the

simulation time in these calculations as a further space-time coordinate. The n-point auto-

correlation functions of the local fields then formally look like the correlation functions in a

field theory with an extra dimension and they are, in fact, sometimes representable in this
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way. Depending on the simulation algorithm, and if the simulated theory is renormaliz-

able, the autocorrelation functions may conceivably be renormalizable as well. The scaling

properties of such algorithms (which, for brevity, will be referred to as renormalizable) are

encoded in the continuum theory and thus become predictable to some extent.

In the pure SU(N) gauge theory, for example, simulation algorithms that integrate

the Langevin equation are known to be renormalizable [1, 2]. The integrated autocorre-

lation times τint of physical observables have dimension [length]2 in this case. Moreover,

the standard renormalization group analysis and a one-loop calculation in perturbation

theory [3–5] imply that they scale according to [6]

τint = Cg
9/11
0

{

1 + O(g2
0)
}

r2
0 (1.1)

at small lattice spacings a, where C is an observable-dependent constant, g0 the bare gauge

coupling and r0 the Sommer radius [11]. In lattice units, the autocorrelation times thus

increase like 1/a2 as a → 0 up to a logarithmically decreasing factor.1

Most simulations of lattice QCD performed today are based on some variant of the

HMC algorithm [12]. The form of the underlying molecular-dynamics equations and free-

field studies [13] suggest that the simulation time has physical dimension [length] in this

case and that the autocorrelation times consequently scale essentially like 1/a. As far we

know, the renormalizability of the algorithm has however never been studied and its scaling

properties in presence of interactions thus remain unknown.

In this paper, the issue is addressed in the framework of perturbation theory. For sim-

plicity the φ4 theory is considered, but our main result (the non-renormalizability of the

molecular-dynamics equations) no doubt extends to most theories of interest. A slightly

generalized version of the HMC algorithm is studied, which was introduced many years ago

by Horowitz [14–16] (see sections 2 and 3). The non-renormalizability of the associated

stochastic equation is then established by showing that the four-point autocorrelation func-

tion of the fundamental field has a non-removable ultraviolet singularity at second order

in the coupling (sections 4 and 5).

2 Stochastic molecular dynamics

In order to simplify the discussion as much as possible, we consider the φ4 theory with a

single scalar field φ and dimensional instead of a lattice regularization. The action of the

field in D = 4 − 2ǫ Euclidean dimensions is given by

S =

∫

dDx

{

1

2
∂µφ(x)∂µφ(x) +

1

2
m2

0φ(x)2 +
g0

4!
φ(x)4

}

, (2.1)

where m0 denotes the bare mass parameter and g0 the bare coupling constant. The gen-

eralized HMC algorithm [14–16] integrates a stochastic version of the molecular-dynamics

1Equation (1.1) is expected to hold on the infinite lattice and on finite lattices with open boundary

conditions [10]. On lattices with periodic boundary conditions, topology-changing tunneling transitions can

give rise to very large autocorrelation times [7–10]. Such transitions are lattice artifacts and are therefore

not included in the analysis that leads to eq. (1.1).
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equations that derive from the action (2.1). In the following subsections, we briefly discuss

these equations and solve them in powers of the coupling g0.

2.1 Evolution equations

As usual the molecular dynamics evolves the field φ(t, x) together with its momentum

π(t, x) as a function of a fictitious time t. The stochastic evolution equations [14–16]

∂tφ = π, (2.2)

∂tπ = −
δS

δφ
− 2µ0π + η

= (∂µ∂µ − m2
0)φ −

g0

3!
φ3 − 2µ0π + η, (2.3)

involve another mass parameter, µ0 > 0, and a Gaussian noise η(t, x) with vanishing

expectation value and variance

〈η(t, x)η(s, y)〉 = 4µ0δ(t − s)δ(x − y). (2.4)

Evidently, the ordinary molecular dynamics is recovered in the limit µ0 → 0. Moreover, in

the second-order form,

∂2
t φ + 2µ0∂tφ = −

δS

δφ
+ η, (2.5)

and after substituting t → 2µ0t, the evolution equations are seen to coincide with the

Langevin equation up to a term that goes to zero at large µ0.

Since its introduction by Horowitz [14–16], the generalized HMC algorithm has been

occasionally studied in the literature, where it is referred to as the Kramers equation or the

L2MC algorithm (see refs. [13, 17, 18], for example). In practice, one starts from the first-

order equations (2.2), (2.3) and implements the algorithm using symplectic integrators and

acceptance-rejection steps. For the theoretical analysis in this paper, we however prefer to

proceed with the second-order equation (2.5).

2.2 Solution of eq. (2.5) to leading order in g0

The leading-order equation

Dφ0 = η, (2.6)

D = ∂2
t + 2µ0∂t − ∂µ∂µ + m2

0, (2.7)

coincides with the Klein-Gordon equation in D +1 dimensions except for the term propor-

tional to µ0, which tends to damp the time evolution of the field. At large µ0 and after a

rescaling of t, the equation actually turns into the heat equation.

The Green function

K(t, x) =

∫

ω,p
e−iωt+ipxK̃(ω, p), (2.8)

K̃(ω, p) =
(

−ω2 − 2iµ0ω + p2 + m2
0

)−1
, (2.9)
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of the differential operator D is discussed in some detail in appendix A. Here and below,

the notational convention
∫

ω
=

∫

dω

2π
,

∫

p
=

∫

dDp

(2π)D
, (2.10)

is used. It is then straightforward to show that the solution of the wave equation (2.6) at

time t ≥ t0 with prescribed initial data at time t0 is given by

φ0(t, x) =

∫ t

t0

ds

∫

dDy K(t − s, x − y)η(s, y) (2.11)

+

∫

dDy {K(t − t0, x − y)(∂tφ0)(t0, y) + (∂t + 2µ0)K(t − t0, x − y)φ0(t0, y)} .

Note that the dependence on the initial data dies away exponentially with increasing time

(see appendix A). The stochastic molecular-dynamics evolution thus thermalizes and even-

tually loses all memory of the initial values of the field.

In the following, we shall only be interested in the behaviour of the autocorrelation

functions after thermalization. We therefore move the thermalization phase to time t0 =

−∞ and are then left with the solution

φ0(t, x) =

∫ t

−∞
ds

∫

dDy K(t − s, x − y)η(s, y) (2.12)

of eq. (2.6) that describes the stationary situation.

2.3 Iterative solution of the evolution equation

Equation (2.5) may be written in the form

Dφ = η −
g0

3!
φ3 (2.13)

or, equivalently, as an integral equation

φ(t, x) = φ0(t, x) −
g0

3!

∫ t

−∞
ds

∫

dDy K(t − s, x − y)φ(s, y)3. (2.14)

Iteration of the latter then yields the solution φ(t, x) in powers of g0.

Each term in this expansion may be represented by a tree diagram with directed lines,

four-point and one-point vertices (see figure 1). In frequency-momentum space,

φ̃(ω, p) =

∫

dt dDx eiωt−ipxφ(t, x), (2.15)

the lines represent the Green function

ω, p

= K̃(ω, p), (2.16)

while the one-point vertices

ω, p = η̃(ω, p) (2.17)
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ω, p

Figure 1. In perturbation theory, the solution of the integral equation (2.14) is given by a series

of directed tree diagrams. The diagrams up to second order in g0 are shown in this figure. All

diagrams have a single external line (labeled by a little square) with ingoing frequency-momentum

(ω, p). The arrows on the internal lines all point in the direction towards the external line.

stand for the insertion of the noise field. As in ordinary Feynman diagrams, there is a

frequency-momentum conservation δ-function

(2π)D+1δ(ω1 + ω2 + ω3 + ω4)δ(p1 + p2 + p3 + p4) (2.18)

associated to each vertex

= −g0 (2.19)

with ingoing frequency-momenta (ω1, p1), . . . , (ω4, p4). The lines in these diagrams are

directed, because K̃(ω, p) is not invariant under a change of sign of ω. In position space,

the arrows point in the direction of increasing simulation time.

3 Autocorrelation functions

The n-point autocorrelation functions of the field φ(t, x) are usually defined by taking the

time average of the product φ(t1, x1) . . . φ(tn, xn) at fixed time lags ti − tj. In the present

setup, the translation symmetry in time allows the time average to be replaced by the av-

erage 〈. . .〉 over the noise field η(s, y). We are thus led to consider the correlation functions

Ãn(ω1, p1; . . . ;ωn, pn) = 〈φ̃(ω1, p1) . . . φ̃(ωn, pn)〉 (3.1)

in frequency-momentum space, which may be computed in perturbation theory by ex-

panding the fields φ̃(ωk, pk) in powers of the coupling g0, following the lines of the previous

section, and by contracting the noise fields using Wick’s rule. As a result one obtains a sum

of Feynman diagrams for the autocorrelation functions similar to the ones for the ordinary

(field-theoretical) correlation functions.

3.1 Feynman rules

The one-point vertices in the tree diagrams that represent the terms in the expansion of

φ̃(ωk, pk) are connected to the rest of the tree through a directed line. When the noise

fields at any two such vertices are contracted, an undirected line

ω, p

= G̃(ω, p) (3.2)
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Figure 2. One-loop vertex diagrams contributing to the two- and four-point correlation functions

of the basic field. Up to permutations of the external lines, these are all one-loop vertex diagrams

with less than six legs.

is obtained, where

G̃(ω, p) = 4µ0K̃(ω, p)K̃(−ω, p). (3.3)

In the case of the two-point autocorrelation function, for example, the contraction of the

lowest-order diagram

ω, p ν, q
(3.4)

leads to

〈φ̃(ω, p)φ̃(ν, q)〉 = (2π)D+1δ(ω + ν)δ(p + q)G̃(ω, p) + O(g0). (3.5)

The Feynman diagrams for the autocorrelation functions thus involve directed lines (2.16),

undirected lines (3.2) and the vertices (2.19). Given these lines and vertices, the Feynman

rules are the usual ones except for the following special features:

(a) Both kinds of lines (directed and undirected) can connect to the vertices. The value

of the latter is the same in all cases.

(b) Each vertex has exactly one outward-directed line attached to it. This line may be

an internal or an external line.

(c) There are no diagrams with loops of directed lines.

(d) External lines may be outward-directed lines or undirected lines. There are no inward-

directed external lines.

The structure of the Feynman diagrams is otherwise the same as in any field theory. In

particular, the diagrams can be decomposed into one-particle irreducible parts and the

lines connecting them. Note that the external legs of the irreducible parts may be directed

or undirected (see figure 2). The two types of legs must be distinguished and there are thus

many more irreducible diagrams than in the case of the ordinary correlation functions.

3.2 Computation of the two-point function to one-loop order

The decomposition of the two-point autocorrelation function into one-particle irreducible

parts reads

Ã2(ω, p; ν, q) = (2π)D+1δ(ω + ν)δ(p + q)
{

G(ω, p) (3.6)

+K(ω, p)Σ(ω, p)G(ω, p) + G(ω, p)Σ(−ω, p)K(−ω, p) + · · ·
}

,
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where the self-energy Σ is given to one-loop order by the diagram 1 in figure 2. A short

calculation, using eq. (A.7), then shows that

Σ(ω, p) = −
g0

2
I1 + O(g2

0), (3.7)

I1 =

∫

q
(q2 + m2

0)
−1 =

ǫ→0
−

m2
0

16π2ǫ
+ O(1). (3.8)

To this order, the self-energy thus coincides with the familiar tadpole diagram that con-

tributes to the ordinary two-point correlation function. In particular, the poles at ǫ = 0

will later be seen to cancel when the mass parameter m0 is renormalized.

3.3 Computation of the diagrams 2 and 3

Apart from diagram 1 (which may be inserted in the external lines), the diagrams 2 and 3

in figure 2 are the only one-particle irreducible diagrams that contribute to the four-point

autocorrelation function at one-loop order. Up to a factor g2
0 and the statistical factor,

they are given by

I2(ω, p) =

∫

ν,q
K̃(ν + ω, q + p)G̃(ν, q), (3.9)

I3(ω, p) =

∫

ν,q
G̃(ν + ω, q + p)G̃(ν, q), (3.10)

where (ω, p) is the external frequency-momentum that flows through the diagrams from

left to right.

The integrals I2 and I3 can be transformed to a useful alternative form by inserting the

time-momentum representation of the propagators (see appendix A). Taking the support

properties of the Green function into account, one first notes that

I2(ω, p) = −
1

2

∫

q

∫ ∞

0
dt eiωt∂t

{

Ĝ(t, q + p)Ĝ(t, q)
}

. (3.11)

Partial integration then yields

I2(ω, p) =
1

2
J0(p) +

iω

2
J1(ω, p), (3.12)

where

J0(p) =

∫

q

{

((q + p)2 + m2
0)(q

2 + m2
0)
}−1

, (3.13)

J1(ω, p) =

∫

q

∫ ∞

0
dt eiωtĜ(t, q + p)Ĝ(t, q). (3.14)

The integral I3 is similarly given by

I3(ω, p) = J1(ω, p) + J1(−ω, p) (3.15)

so that it suffices to work out the integrals J0 and J1.

– 7 –
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The integral J0 coincides with the familiar one-loop diagram contributing to the ordi-

nary four-point correlation function in the φ4 theory. It is logarithmically divergent and

thus has a pole,

J0(p) =
ǫ→0

1

16π2ǫ
+ O(1), (3.16)

at ǫ = 0. In four dimensions, the integral J1 has negative dimension of mass and may there-

fore be expected to be absolutely convergent. The following explicit calculation however

shows that this is not so.

The integral over t in eq. (3.14) can be performed analytically starting from the time-

momentum representation (A.7) of the field propagator. After some algebra and the sub-

stitution q → q − 1
2p, the integration leads to the expression

J1(ω, p) = (2µ0 − iω)

∫

q

{

2

(

q2 +
1

4
p2 + m2

0

)

+ (2µ0 − iω)(4µ0 − iω)

}

×

{

4(qp)2 + (2µ0 − iω)2
[

4

(

q2 +
1

4
p2 + m2

0

)

− iω(4µ0 − iω)

]}−1

×

{

((

q +
1

2
p

)2

+ m2
0

)((

q −
1

2
p

)2

+ m2
0

)

}−1

. (3.17)

The integrand in this formula is a singularity-free function of ω, p and q, but at large q the

integral is logarithmically divergent in four dimensions. A somewhat lengthy calculation

then shows that

J1(ω, p) =
ǫ→0

1

16π2ǫ

{

(2µ0 − iω)

(

1 +

√

1 +
p2

(2µ0 − iω)2

)}−1

+ O(1) (3.18)

(see appendix B; the branch of the square root to be taken is the principal one).

4 Relation to the ordinary correlation functions

Since the stochastic molecular dynamics simulates the field theory with action (2.1), the

equal-time autocorrelation functions

C̃n(p1, . . . , pn) =

∫

ω1...ωn

Ãn(ω1, p1; . . . ;ωn, pn) (4.1)

must coincide with the ordinary correlation functions of the fundamental field in momen-

tum space [14–16]. In this section, we show that the two- and the four-point autocorrelation

functions do have this property at one-loop order of perturbation theory. Partly the cal-

culation serves as a consistency check, but some of the intermediate results will be helpful

in section 5 as well, where we discuss the non-renormalizability of the stochastic molecular

dynamics.
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4.1 Two-point function

Recalling the results obtained in subsection 3.2, the two-point autocorrelation function is

given by

Ã2(ω, p; ν, q) = (2π)D+1δ(ω + ν)δ(p + q)

×

{

G̃(ω, p) +
g0

2
I1

∂

∂m2
0

G̃(ω, p) + O(g2
0)

}

. (4.2)

Using the time-momentum representation (A.7) of the field propagator, the integrals over

the frequencies are easily worked out and one recovers the familiar expression

C̃2(p, q) = (2π)Dδ(p + q)
{

(p2 + m2
0)

−1 −
g0

2
I1(p

2 + m2
0)

−2 + O(g2
0)
}

(4.3)

for the two-point correlation function in the φ4 theory.

4.2 Four-point function at leading order

The leading-order contribution

Ã
(0)
4 (ω1, p1; . . . ;ω4, p4) = (4.4)

to the four-point autocorrelation function is a sum of four diagrams. If one substitutes

2π δ(ω1 + · · · + ω4) =

∫

dt e−it(ω1+···+ω4) (4.5)

for the frequency-conservation δ-function, the integrals over the frequencies that lead from

the autocorrelation to the ordinary correlation functions factorize and after a few further

steps one obtains

C̃
(0)
4 (p1, . . . , p4) = (2π)Dδ(p1 + · · · + p4)g0

∫ ∞

0
dt ∂t

{

Ĝ(t, p1) . . . Ĝ(t, p4)
}

(4.6)

for the leading-order four-point correlation function. Use has here been made of the iden-

tity (A.6) and of the fact that the Green function K̂(t, p) vanishes at negative times t.

Performing the time integration in eq. (4.6), the correlation function

C̃
(0)
4 (p1, . . . , p4) = (2π)Dδ(p1 + · · · + p4)(−g0)(p

2
1 + m2

0)
−1 . . . (p2

4 + m2
0)

−1 (4.7)

is then seen to coincide with the expected expression.

4.3 Four-point function at one-loop order

The second-order contribution Ã
(1)
4 (ω1, p1; . . . ;ω4, p4) to the four-point autocorrelation

function is a sum of terms proportional to the integrals I1, J0 and J1. There are 28

diagrams with an insertion of diagram 1 in one of the external lines. The sum of all these

contributions to the four-point function is

Ã
(1)
4 (ω1, p1; . . . ;ω4, p4)

∣

∣

∣

I1
=

g0

2
I1

∂

∂m2
0

Ã
(0)
4 (ω1, p1; . . . ;ω4, p4). (4.8)
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As discussed in subsection 3.3, diagram 2 is a linear combination of the integrals J0 and

J1, while diagram 3 is expressed through J1 alone. Collecting all terms proportional to J0,

their sum is found to be given by

Ã
(1)
4 (ω1, p1; . . . ;ω4, p4)

∣

∣

∣

J0

= −
g0

2

{

J0(p1 + p2) + J0(p1 + p3) + J0(p1 + p4)
}

×Ã
(0)
4 (ω1, p1; . . . ;ω4, p4). (4.9)

Both expressions (4.8) and (4.9) are easily integrated over the frequencies, because the only

factor that depends on ω1, . . . , ω4 is the tree-level four-point function. One then discovers

that the expected result for C̃
(1)
4 (p1, . . . , p4) is obtained already from these two contributions

to the four-point function.

In order to show that the remaining terms (i.e. those proportional to J1) vanish when

integrated over the frequencies, first consider the channel where the frequency-momentum

combination

(ω, p) = (ω1 + ω2, p1 + p2) (4.10)

flows through the diagrams 2 and 3. Dropping the terms proportional to J0 and using the

identity (A.5), one obtains

= −
g0

2
J1(ω, p) ×

{ }

(4.11)

for the contribution of diagram 2 in this channel. The contribution of the other diagram

is similarly given by

= −
g0

2
[J1(ω, p) + J1(−ω, p)] ×

{ }

, (4.12)

where the prefactor includes the symmetry factor of the diagram. In total there are six

further diagrams that differ from the diagrams 2 and 3 by a different distribution of the

arrows to the external lines, each of them being given by the corresponding expression

(4.11) or (4.12) with the proper assignment of arrows. The sum of all these contributions

to the four-point function is then equal to

−
g0

2
J1(ω, p) ×

{ }

+ {ωk → −ωk} (4.13)

i.e. all terms where the arrows are both ingoing or both outgoing cancel in the sum.

It is not difficult to show that the terms in eq. (4.13) vanish when integrated over the

frequencies. The integral over the first term, for example, is proportional to
∫

ω1,...,ω4

δ(ω1 + · · · + ω4)J1(ω, p)K̃(ω1, p1)G̃(ω2, p2)G̃(ω3, p3)K̃(−ω4, p4). (4.14)

Eliminating ω4, the integral becomes
∫

ω1,ω2,ω3

J1(ω1 + ω2, p)K̃(ω1, p1)G̃(ω2, p2)G̃(ω3, p3)K̃(ω1 + ω2 + ω3, p4), (4.15)
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and if one first integrates over ω1, the term is seen to vanish, because the integrand has

no singularities in the half-plane Imω1 ≥ 0 and falls off at least like ω−4
1 at large ω1.

Exactly the same happens for all other terms in eq. (4.13) and also those in the other two

frequency-momentum channels.

5 Non-renormalizability of the stochastic molecular dynamics

We now address the question whether the ultraviolet singularities of the autocorrelation

functions can be canceled by the addition of local counterterms to the evolution equa-

tion (2.5).

5.1 Parameter renormalization

Evidently, the list of counterterms must include those corresponding to the usual parameter

and field renormalization that is required for the renormalization of the ordinary correlation

functions. In the minimal subtraction scheme, the bare coupling and mass are related to

the renormalized parameters g and m through

g0 = M2ǫg
{

1 +
3g

32π2ǫ
+ O(g2)

}

, (5.1)

m2
0 = m2

{

1 +
g

32π2ǫ
+ O(g2)

}

, (5.2)

where M denotes the normalization mass. To one-loop order, the fundamental field does

not need to be renormalized in this theory.

Recalling eqs. (4.2), (4.8) and (4.9), it is then immediately clear that the parameter

renormalization cancels the singularities of the two- and four-point autocorrelation func-

tions which derive from the poles (3.8) and (3.16) of the integrals I1 and J0.

5.2 Non-renormalizability of the four-point function

The four-point autocorrelation function has further singularities proportional to the di-

vergent part (3.18) of the integral J1. As explained in section 4, the ordinary four-point

correlation function does not receive any contributions from this integral (and is therefore

finite after the parameter renormalization), but the terms proportional to J1 do contribute

to the autocorrelation function at non-zero time separations.

The residue of the pole in eq. (3.18) is the Fourier transform of a distribution

e−2µ0t

32π4x2
θ(t)δ(t2 − x2) (5.3)

supported on the light cone t = |x|. Both diagrams 2 and 3 thus have a non-local singu-

larity that cannot be canceled by including local counterterms in the stochastic molecular

dynamics. The latter is therefore not renormalizable.

The presence of the singularity (5.3) can be understood by noting that the integrand

of the integral

J1(ω, p) =

∫ ∞

0
dt

∫

dDx eiωt−ipxG(t, x)2 (5.4)

– 11 –
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random initial momentum

Figure 3. The HMC algorithm moves the fundamental field φ through field space along a piecewise

smooth curve. In the smooth segments of the curve, the field is evolved from time t = 0 to some

time t = τ according to the molecular-dynamics equations, starting from the current field φ and

Gaussian random values for its momentum π.

has a non-integrable singularity in D = 4 dimensions proportional to (t − |x|)−1 (see

subsection A.3). Such light-cone singularities are a characteristic feature of Green functions

of hyperbolic wave equations and the non-renormalizability of the stochastic molecular

dynamics is thus seen to be related to its hyperbolic nature.

In ordinary field theory, one-loop integrals do not have non-local ultraviolet singu-

larities, because they can be Wick rotated to Euclidean space where the propagators are

singular at coinciding points only. The spectral condition and the locality of the theory

guarantee that no singularities stand in the way of the Wick rotation [19]. In the case of

the diagrams 2 and 3, however, the integrands have poles in all quadrants of the complex

frequency plane and the integrals (3.9) and (3.10) consequently cannot be Wick rotated

without generating additional terms.

5.3 Implications for the HMC algorithm

In practice, the HMC algorithm involves a numerical integration of the (ordinary)

molecular-dynamics equations and acceptance-rejection steps to correct for the integration

errors. For simplicity the integration is assumed to be exact in this section. No acceptance-

rejection steps are then required and whether one uses the first- or the second-order form

of the molecular-dynamics equations makes no difference.

The molecular-dynamics trajectories generated by the algorithm are smooth segments

of a continuous curve in field space (see figure 3). Along the trajectories, the n-point

autocorrelation functions in the time-momentum representation,

Ân(t1, p1; . . . ; tn, pn) = 〈φ̂(t1, p1) . . . φ̂(tn, pn)〉, 0 ≤ tk ≤ τ, (5.5)

may be defined, where the bracket 〈. . .〉 stands for the average over all trajectories in an

infinitely long simulation. The autocorrelation functions (5.5) only describe the dynamical

properties of the algorithm in the specified range of times, but the discussion in the following

paragraphs shows that already these correlation functions are not renormalizable.

The average over trajectories in eq. (5.5) amounts to taking the average over the initial

values of the field φ and its momentum π = ∂tφ. Since these are distributed according

to the equilibrium distribution (a Gaussian in the case of the momentum), the average

coincides with the ordinary expectation value. In perturbation theory, the correlation

– 12 –
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functions can therefore be calculated by solving the (non-stochastic) molecular-dynamics

equations in the range 0 ≤ t ≤ τ with prescribed initial data at t = 0 and by computing

the expectation value of the product φ̂(t1, p1) . . . φ̂(tn, pn) using the standard Feynman

rules for the correlation functions of the initial data.

In the case of the stochastic molecular dynamics, the computation of the autocorre-

lation functions in the time-momentum representation can be organized in the same way.

A notable difference is that the contractions of the noise field give rise to additional di-

agrams, but since all these diagrams disappear in the limit µ0 → 0, it is clear that the

autocorrelation functions (5.5) are given by

Ân(t1, p1; . . . ; tn, pn) = lim
µ0↓0

∫

ω1,...,ωn

e−i(ω1t1+···+ωntn)Ãn(ω1, p1; . . . ;ωn, pn), (5.6)

where the autocorrelation functions on the right are those discussed in the previous sections.

Note that the frequency integrals must be performed before µ0 is taken to zero, as otherwise

one may run into infrared-singular intermediate expressions.

In view of its relation to the stochastic molecular dynamics, as expressed through

eq. (5.6), and since the distribution (5.3) remains non-local at µ0 = 0, we are thus led to

conclude that also the HMC algorithm is not renormalizable.

5.4 The Langevin limit

As already mentioned in subsection 2.1, the stochastic molecular-dynamics equation (2.5) is

equivalent to the Langevin equation in the limit µ0 → ∞ up to a rescaling of the simulation

time.2 The associated n-point autocorrelation functions,

Ã∞
n (ω1, p1; . . . ;ωn, pn) = lim

µ0→∞
(2µ0)

−nÃn(ω1/2µ0, p1; . . . ;ωn/2µ0, pn), (5.7)

are known to be renormalizable to all orders of perturbation theory [1].

It may be instructive to see how exactly the renormalizability of the autocorrelation

functions gets restored at one-loop order when µ0 is sent to infinity. To this end, first note

that the Green function

lim
µ0→∞

K̃(ω/2µ0, p) =
1

−iω + p2 + m2
0

(5.8)

assumes the expected form, which is smooth in position space except for a singularity at

the origin. At one-loop order, the limit of the two-point function and the renormalizable

parts of the four-point function is then easily determined starting from the identities (4.2),

(4.8) and (4.9). These remain valid in the limit and only the tree-level autocorrelation

functions are replaced by the corresponding expressions involving the propagator

lim
µ0→∞

(2µ0)
−1G̃(ω/2µ0, p) =

2

ω2 + (p2 + m2
0)

2
(5.9)

and the Green function (5.8).

2In lattice field theory, the Langevin limit can also be reached together with the continuum limit by

setting µ0 to some fixed value in units of the lattice spacing.
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The contribution to the four-point function proportional to the integral J1 (which

contains the non-removable ultraviolet singularity in the case of the stochastic molecular

dynamics) however changes its character, because the integral

lim
µ0→∞

(2µ0)
−1J1(ω/2µ0, p) =

∫

q

{

−iω + 2q2 +
1

2
p2 + 2m2

0

}−1

×

{

((

q +
1

2
p

)2

+ m2
0

)((

q −
1

2
p

)2

+ m2
0

)

}−1

(5.10)

turns out to be absolutely convergent. In the Langevin limit, all ultraviolet singularities

at one-loop order are thus canceled by the parameter renormalization, as is expected to be

the case in this theory [1].

6 Concluding remarks

The HMC algorithm is currently the preferred simulation algorithm in lattice QCD. In the

past two decades, various improvements were included in this algorithm, many of them

with the aim of reducing the computational effort required at small sea-quark masses (see

ref. [20] for a recent review). Its scaling behaviour with respect to the lattice spacing has

not received as much attention so far, but rapidly becomes an important issue when the

continuum limit is approached.

While the dynamical properties of the HMC algorithm are well understood in free

field theory [13], the situation in the presence of interactions tends to be rather more com-

plicated. In particular, certain lattice artifacts (topology-changing tunneling transitions,

for example, or unphysical critical points in the space of bare couplings) can cause large

autocorrelations. The results obtained in this paper show that even in the absence of

such effects there is no reason to expect that the HMC algorithm scales essentially as in a

theory of free fields. Evidently, the non-renormalizability of the algorithm does not imply

that it is invalid or unusable close to the continuum limit, but without further insight its

scaling behaviour is unpredictable in interacting theories.

The HMC algorithm and the stochastic molecular dynamics may conceivably fall into

the universality class of the Langevin equation. Independently of whether this is the case

or not, it may be worth looking for renormalizable algorithms where the simulation time

has scaling dimension less than 2. Eventually such algorithms might turn out to be faster

than the HMC algorithm and they would have the advantage that their efficiency at small

lattice spacings is predictable.

A Properties of the Green function K(t, x)

A.1 Definition

The Fourier transform (2.9) of the Green function is a smooth function of ω and p that

satisfies
∣

∣K̃(ω, p)
∣

∣

2
≤ C

(

ω2 + p2 + m2
0

)−1
(A.1)
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for some (mass-dependent) constant C. K̃(ω, p) is therefore a tempered distribution and so

is the Green function in position space. However, the Fourier integral (2.8) is not absolutely

convergent and is to be understood in the sense of distributions. All these comments also

apply to the propagator (3.3) of the basic field.

As a distribution, K(t, x) satisfies the wave equation

DK(t, x) = δ(t)δ(x), (A.2)

where D is given by eq. (2.7). Since the polynomial representing D in frequency-momentum

space is nowhere equal to zero, the Green function is the unique tempered distribution that

solves eq. (A.2). In particular, one does not have the freedom of specifying retarded or

advanced boundary conditions.

A.2 Time-momentum representation

Using the residue theorem, it is possible to work out the Green function

K̂(t, p) =

∫

ω
e−iωtK̃(ω, p) (A.3)

= θ(t)e−µ0t sin(ǫpt)

ǫp
, ǫp =

(

p2 + m2
0 − µ2

0

)1/2
. (A.4)

in the time-momentum representation. Note that ǫp is imaginary at small momenta if

µ0 > m0, but the Green function always decays exponentially in the time direction.

In the case of the field propagator, the identity

iωG̃(ω, p) = K̃(ω, p) − K̃(−ω, p) (A.5)

and thus

∂tĜ(t, p) = K̂(−t, p) − K̂(t, p) (A.6)

may be used to show that

Ĝ(t, p) =
e−µ0|t|

p2 + m2
0

{

cos(ǫpt) + µ0
sin(ǫp|t|)

ǫp

}

. (A.7)

An immediate consequence of these results is that K(t, x) and G(t, x) become smooth

functions of t at all t 6= 0 when smeared with a test function in x. Moreover,

K(t, x) → 0, ∂tK(t, x) → δ(x), (A.8)

as t ↓ 0.

A.3 Explicit expression for K(t, x) in four dimensions

In dimension D = 4, the Green function in position space, K(t, x), can be calculated

analytically. While the expression is of some interest in the context of our discussion of

the non-renormalizability of the stochastic molecular dynamics in section 5, its exact form

is not needed and the proof of the results quoted below is therefore omitted.
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First note that the product etµ0K(t, x) is invariant under Lorentz transformations in 5

dimensions. As a consequence, and since the Green function vanishes at negative times, its

support must be contained in the forward light cone t ≥ |x|. Inside the light cone, i.e. at

all t > |x|, the formula

K(t, x) = −
e−µ0t

4π2

{

cos(ǫ0s)

s3
+

ǫ0 sin(ǫ0s)

s2

}

s=(t2−x2)1/2

(A.9)

holds, where ǫ0 = (m2
0 − µ2

0)
1/2. While the Green function has no singularities there, the

formula shows that it diverges proportionally to

e−µ0t(t2 − x2)−3/2 (A.10)

along the light cone t = |x|.

B Proof of eq. (3.18)

First note that the integral

Ĵ1(ω, p) =
1

2

∫

q

2µ0 − iω
[

(qp)2 + (2µ0 − iω)2(q2 + m2
0)
]

(q2 + m2
0)

(B.1)

has the same divergent part as J1, because the integrand of the difference Ĵ1 − J1 falls off

like (q2)−3 at large q and is therefore absolutely integrable in four dimensions.

In view of the reality property

Ĵ1(−ω, p) = Ĵ1(ω, p)∗, (B.2)

it suffices to calculate Ĵ1(ω, p) at all positive ω. The imaginary part of the factor

(qp)2 + (2µ0 − iω)2(q2 + m2
0) (B.3)

is then strictly negative and the Feynman parameter representation

Ĵ1(ω, p) =
i

2
(2µ0 − iω)

∫ ∞

0
dudv

∫

q
e−iu[(qp)2+(2µ0−iω)2(q2+m2

0
)] e−v(q2+m2

0
) (B.4)

is therefore well defined.

The Gaussian integral over the momentum q can now be performed and leads to the

formula

Ĵ1(ω, p) =
i

2(4π)D/2
(2µ0 − iω)

∫ ∞

0
dudv e−(uz+v)m2

0

×
{

u(z + ip2) + v
}−1/2

{uz + v}−(D−1)/2 , (B.5)

where

z = i(2µ0 − iω)2 = 4µ0ω + i(4µ2
0 − ω2). (B.6)
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In eq. (B.5), the phases of the expressions in the curly brackets range from −1
2π to +1

2π

and it is understood that the corresponding branch of their powers is taken.

The integral (B.5) is absolutely convergent for D < 4 and a holomorphic function of

z in the half-plane Re z > 0. Its values along the real axis z > 0 can be computed by first

substituting u → u/z and subsequently

u = ts, v = t(1 − s), (B.7)

0 ≤ t < ∞, 0 ≤ s ≤ 1. (B.8)

The integral then factorizes into analytically calculable integrals and one finds that it is

given by

iΓ(ǫ)

m2ǫ
0 (4π)D/2

2µ0 − iω

z

(

1 +

√

1 + i
p2

z

)−1

. (B.9)

This expression analytically extends to the half-plane Re z > 0 and therefore coincides

with the integral (B.5) at all these values of z. Inserting eq. (B.6), the result

Ĵ1(ω, p) =
Γ(ǫ)

m2ǫ
0 (4π)D/2

{

(2µ0 − iω)

(

1 +

√

1 +
p2

(2µ0 − iω)2

)}−1

(B.10)

is thus obtained, where the branch of the square root with positive real part is to be

taken. This formula holds for both positive and negative ω.
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