11 research outputs found

    Knowledge based identification of essential signaling from genome-scale siRNA experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A systems biology interpretation of genome-scale RNA interference (RNAi) experiments is complicated by scope, experimental variability and network signaling robustness. Over representation approaches (ORA), such as the Hypergeometric or z-score, are an established statistical framework used to associate RNA interference effectors to biologically annotated gene sets or pathways. These methods, however, do not directly take advantage of our growing understanding of the interactome. Furthermore, these methods can miss partial pathway activation and may be biased by protein complexes. Here we present a novel ORA, protein interaction permutation analysis (PIPA), that takes advantage of canonical pathways and established protein interactions to identify pathways enriched for protein interactions connecting RNAi hits.</p> <p>Results</p> <p>We use PIPA to analyze genome-scale siRNA cell growth screens performed in HeLa and TOV cell lines. First we show that interacting gene pair siRNA hits are more reproducible than single gene hits. Using protein interactions, PIPA identifies enriched pathways not found using the standard Hypergeometric analysis including the FAK <it>cytoskeletal remodeling pathway</it>. Different branches of the <it>FAK </it>pathway are distinctly essential in HeLa versus TOV cell lines while other portions are uneffected by siRNA perturbations. Enriched hits belong to protein interactions associated with cell cycle regulation, anti-apoptosis, and signal transduction.</p> <p>Conclusion</p> <p>PIPA provides an analytical framework to interpret siRNA screen data by merging biologically annotated gene sets with the human interactome. As a result we identify pathways and signaling hypotheses that are statistically enriched to effect cell growth in human cell lines. This method provides a complementary approach to standard gene set enrichment that utilizes the additional knowledge of specific interactions within biological gene sets. </p

    Genome-wide analyses identify common variants associated with macular telangiectasia type 2

    Get PDF
    Idiopathic juxtafoveal retinal telangiectasis type 2 (macular telangiectasia type 2; MacTel) is a rare neurovascular degenerative retinal disease. To identify genetic susceptibility loci for MacTel, we performed a genome-wide association study (GWAS) with 476 cases and 1,733 controls of European ancestry. Genome-wide significant associations (P < 5 × 10−8) were identified at three independent loci (rs73171800 at 5q14.3, P = 7.74 × 10−17; rs715 at 2q34, P = 9.97 × 10−14; rs477992 at 1p12, P = 2.60 × 10−12) and then replicated (P < 0.01) in an independent cohort of 172 cases and 1,134 controls. The 5q14.3 locus is known to associate with variation in retinal vascular diameter, and the 2q34 and 1p12 loci have been implicated in the glycine/serine metabolic pathway. We subsequently found significant differences in blood serum levels of glycine (P = 4.04 × 10−6) and serine (P = 2.48 × 10−4) between MacTel cases and controls

    Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes

    Get PDF
    Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts’ maps could uncover functionally and clinically related genes.Molecular Psychiatry advance online publication, 31 May 2016; doi:10.1038/mp.2016.84

    Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic activities in gene regulatory architectures

    Get PDF
    Changes in the epigenetic regulation of gene expression have a central role in evolution. Here, we extensively profiled a panel of human, chimpanzee, gorilla, orangutan, and macaque lymphoblastoid cell lines (LCLs), using ChIP-seq for five histone marks, ATAC-seq and RNA-seq, further complemented with whole genome sequencing (WGS) and whole genome bisulfite sequencing (WGBS). We annotated regulatory elements (RE) and integrated chromatin contact maps to define gene regulatory architectures, creating the largest catalog of RE in primates to date. We report that epigenetic conservation and its correlation with sequence conservation in primates depends on the activity state of the regulatory element. Our gene regulatory architectures reveal the coordination of different types of components and highlight the role of promoters and intragenic enhancers (gE) in the regulation of gene expression. We observe that most regulatory changes occur in weakly active gE. Remarkably, novel human-specific gE with weak activities are enriched in human-specific nucleotide changes. These elements appear in genes with signals of positive selection and human acceleration, tissue-specific expression, and particular functional enrichments, suggesting that the regulatory evolution of these genes may have contributed to human adaptation.R.G.-P. was supported by a fellowship from MICINN (FPU13/01823). P.E.-C. was supported by a Formació de Personal Investigador fellowship from Generalitat de Catalunya (FI_B00122). M.K. was supported by a Deutsche Forschungsgemeinschaft (DFG) fellowship (KU 3467/1-1) and the Postdoctoral Junior Leader Fellowship Program from “la Caixa” Banking Foundation (LCF/BQ/PR19/11700002). D.J. was supported by a Juan de la Cierva fellowship (FJCI2016-29558) from MICINN. T.M-B. is supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement EC-H2020-ERC-CoG-ApeGenomeDiversity-864203), BFU2017-86471-P (AEI/FEDER, UE), “Unidad de Excelencia María de Maeztu”, funded by the AEI (CEX2018-000792-M), Howard Hughes International Early Career, NIH 1R01HG010898-01A1, Obra Social “La Caixa” and Secretaria d’Universitats i Recerca and CERCA Program del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880). G.M., V.D.C., and L.D.C. were supported by grants from the Spanish of Economy, Industry, and Competitiveness (MEIC) (BFU2016-75008-P) and G.M. was also supported by the “Convocatoria de Ayudas Fundación BBVA a Investigadores, Innovadores y Creadores Culturales”. J.L.G.-S. was supported by the Spanish government (grants BFU2016-74961-P), an institutional grant Unidad de Excelencia María de Maeztu (MDM-2016-0687) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740041). A.N. was supported by Fondo Europeo de Desarrollo Regional (FEDER) with project grants BFU2016-77961-P and PGC2018- 101927-B-I00 and by the Spanish National Institute of Bioinformatics (PT17/0009/0020)

    Pharmacokinetics, Pharmacodynamics, and Pharmacogenomics of Immunosuppressants in Allogeneic Hematopoietic Cell Transplantation: Part II

    No full text
    Part I of this article included a pertinent review of allogeneic hematopoietic cell transplantation (alloHCT), the role of postgraft immunosuppression in alloHCT, and the pharmacokinetics, pharmacodynamics, and pharmacogenomics of the calcineurin inhibitors and methotrexate. In this article, part II, we review the pharmacokinetics, pharmacodynamics, and pharmacogenomics of mycophenolic acid (MPA), sirolimus, and the antithymocyte globulins (ATG). We then discuss target concentration intervention (TCI) of these postgraft immunosuppressants in alloHCT patients, with a focus on current evidence for TCI and on how TCI may improve clinical management in these patients. Currently, TCI using trough concentrations is conducted for sirolimus in alloHCT patients. There are several studies demonstrating that MPA plasma exposure is associated with clinical outcomes, with an increasing number of alloHCT patients needing TCI of MPA. Compared to MPA, there are fewer pharmacokinetic/dynamic studies of rabbit ATG and horse ATG in alloHCT patients. Future pharmacokinetic/dynamic research of postgraft immunosuppressants should include “–omics” based tools: pharmacogenomics may be used to gain an improved understanding of the covariates influencing pharmacokinetics and proteomics and metabolomics as novel methods to elucidate pharmacodynamic responses
    corecore