1,591 research outputs found

    Circulating tumor DNA in patients with colorectal adenomas: assessment of detectability and genetic heterogeneity.

    Get PDF
    Improving early detection of colorectal cancer (CRC) is a key public health priority as adenomas and stage I cancer can be treated with minimally invasive procedures. Population screening strategies based on detection of occult blood in the feces have contributed to enhance detection rates of localized disease, but new approaches based on genetic analyses able to increase specificity and sensitivity could provide additional advantages compared to current screening methodologies. Recently, circulating cell-free DNA (cfDNA) has received much attention as a cancer biomarker for its ability to monitor the progression of advanced disease, predict tumor recurrence and reflect the complex genetic heterogeneity of cancers. Here, we tested whether analysis of cfDNA is a viable tool to enhance detection of colon adenomas. To address this, we assessed a cohort of patients with adenomas and healthy controls using droplet digital PCR (ddPCR) and mutation-specific assays targeted to trunk mutations. Additionally, we performed multiregional, targeted next-generation sequencing (NGS) of adenomas and unmasked extensive heterogeneity, affecting known drivers such as APC, KRAS and mismatch repair (MMR) genes. However, tumor-related mutations were undetectable in patients' plasma. Finally, we employed a preclinical mouse model of Apc-driven intestinal adenomas and confirmed the inability to identify tumor-related alterations via cfDNA, despite the enhanced disease burden displayed by this experimental cancer model. Therefore, we conclude that benign colon lesions display extensive genetic heterogeneity, that they are not prone to release DNA into the circulation and are unlikely to be reliably detected with liquid biopsies, at least with the current technologies

    Literature Triage and Indexing in the Mouse Genome Informatics (MGI) Group

    Get PDF
    The Mouse Genome Informatics (MGI; "http://www.informatics.jax.org":http://www.informatics.jax.org) group is comprised of several collaborating projects including the Mouse Genome Database (MGD) Project, the Gene Expression Database (GXD) Project, the Mouse Tumor Biology (MTB) Database Project, and the Gene Ontology (GO) Project. Literature identification and collection is performed cooperatively amongst the groups.

In recent years many institutional libraries have transitioned from a focus largely on print holdings to one of electronic access to journals. This change has necessitated adaptation on the part of the MGI curatorial group. Whereas the majority of journals covered by the group used to be surveyed in paper form, those journals are now surveyed electronically. Approximately 160 journals have been identified as those most relevant to the various database groups. Each curator in the group has the responsibility of scanning several journals for articles relevant to any of the database projects. Articles chosen via this process are marked as to their potential significance for various projects. Each article is catalogued in a Master Bibliography section of the MGI database system and annotated to the database sections for which it has been identified as relevant. A secondary triage process allows curators from each group to scan the chosen articles and mark ones desired for their project if such annotation has been missed on the initial scan.

Once articles have been identified for each database project a variety of processes are implemented to further categorize and index data from those articles. For example, the Alleles and Phenotype section of the MGD database indexes each article marked for MGD and in this indexing process they identify each mouse gene and allele examined in the article. The GXD database indexing process has a different focus. In this case articles are indexed with regard to the stage of development used in the study as well as the assay technique used. In each case the indexing gives an overview of the data held in the article and assists in the more extensive curation performed in the following step of the curation process. Indexing also provides each group with valuable information used to prioritize and streamline the overall curation process.

The MGI projects are supported by NHGRI grants HG000330, HG00273, and HG003622, NICHD grant HD033745, and NCI grant CA089713

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Identification of Rhoptry Trafficking Determinants and Evidence for a Novel Sorting Mechanism in the Malaria Parasite Plasmodium falciparum

    Get PDF
    The rhoptry of the malaria parasite Plasmodium falciparum is an unusual secretory organelle that is thought to be related to secretory lysosomes in higher eukaryotes. Rhoptries contain an extensive collection of proteins that participate in host cell invasion and in the formation of the parasitophorous vacuole, but little is known about sorting signals required for rhoptry protein targeting. Using green fluorescent protein chimeras and in vitro pull-down assays, we performed an analysis of the signals required for trafficking of the rhoptry protein RAP1. We provide evidence that RAP1 is escorted to the rhoptry via an interaction with the glycosylphosphatidyl inositol-anchored rhoptry protein RAMA. Once within the rhoptry, RAP1 contains distinct signals for localisation within a sub-compartment of the organelle and subsequent transfer to the parasitophorous vacuole after invasion. This is the first detailed description of rhoptry trafficking signals in Plasmodium

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • …
    corecore