27 research outputs found

    Functional conservation between structurally diverse ribosomal proteins from Drosophila melanogaster and Saccharomyces cerevisiae: fly L23a can substitute for yeast L25 in ribosome assembly and function

    Get PDF
    The proposed Drosophila melanogaster L23a ribosomal protein features a conserved C-terminal amino acid signature characteristic of other L23a family members and a unique N-terminal extension [Koyama et al. (Poly(ADP-ribose) polymerase interacts with novel Drosophila ribosomal proteins, L22 and l23a, with unique histone-like amino-terminal extensions. Gene 1999; 226: 339–345)], absent from Saccharomyces cerevisiae L25 that nearly doubles the size of fly L23a. The ability of fly L23a to replace the role of yeast L25 in ribosome biogenesis was determined by creating a yeast strain carrying an L25 chromosomal gene disruption and a plasmid-encoded FLAG-tagged L23a gene. Though affected by a reduced growth rate, the strain is dependent on fly L23a-FLAG function for survival and growth, demonstrating functional compatibility between the fly and yeast proteins. Pulse-chase experiments reveal a delay in rRNA processing kinetics, most notably at a late cleavage step that converts precursor 27S rRNA into mature 25S rRNA, likely contributing to the strain's slower growth pattern. Yet, given the essential requirement for L23(a)/L25 in ribosome biogenesis, there is a remarkable tolerance for accommodating the fly L23a N-terminal extension within the structure of the yeast ribosome. A search of available databases shows that the unique N-terminal extension is shared by multiple insect lineages. An evolutionary perspective on L23a structure and function within insect lineages is discussed

    Review of the anatase to rutile phase transformation

    Full text link

    The role of abnormal grain growth on solid-state dewetting kinetics

    No full text
    International audienceContinuous thin films of Pt on A-plane 1 1 2 0 À Á sapphire substrates were dewetted to characterize the morphological evolution and dew-etting kinetics at 800 °C using an oxygen partial pressure of 10 À20 atm. Hole growth was studied, focusing on partially dewetted samples. Four different low-index orientation relationships were found between the Pt and sapphire substrate by electron backscattered diffraction combined with transmission electron diffraction patterns. Abnormal grains adjacent to the holes with a small deviation from one of the low-index orientation relationships were observed. The difference in the heights of the abnormal grains adjacent to the holes (rim-height) is influenced by the initial position of the hole, and the existence of grains with a low-energy interface orientation relationship, and not only by diffusivity rates dictated by surface orientation as described in existing edge-retraction models. The existence of low-index orientation relationships is seen as the driving force for abnormal grain growth in the vicinity of the holes, and is a dominant factor in controlling the dewetting rate of thin metal films on oxide surfaces
    corecore