54 research outputs found

    The thermodynamic and kinetic properties of hydrogen dimers on graphene

    Full text link
    The thermodynamic and kinetic properties of hydrogen adatoms on graphene are important to the materials and devices based on hydrogenated graphene. Hydrogen dimers on graphene with coverages varying from 0.040 to 0.111 ML (1.0 ML =3.8×1015= 3.8\times10^{15}cm2^{-2}) were considered in this report. The thermodynamic and kinetic properties of H, D and T dimers were studied by ab initio simulations. The vibrational zero-point energy corrections were found to be not negligible in kinetics, varying from 0.038 (0.028, 0.017) to 0.257 (0.187, 0.157) eV for H (D, T) dimers. The isotope effect exhibits as that the kinetic mobility of a hydrogen dimer decreases with increasing the hydrogen mass. The simulated thermal desorption spectra with the heating rate α=1.0\alpha = 1.0 K/s were quite close to experimental measurements. The effect of the interaction between hydrogen dimers on their thermodynamic and kinetic properties were analyzed in detail.Comment: submitted to Surface Scienc

    Ab initio simulations of the kinetic properties of the hydrogen monomer on graphene

    Full text link
    The understanding of the kinetic properties of hydrogen (isotopes) adatoms on graphene is important in many fields. The kinetic properties of hydrogen-isotope (H, D and T) monomers were simulated using a composite method consisting of density functional theory, density functional perturbation theory and harmonic transition state theory. The kinetic changes of the magnetic property and the aromatic π\pi bond of the hydrogenated graphene during the desorption and diffusion of the hydrogen monomer was discussed. The vibrational zero-point energy corrections in the activation energies were found to be significant, ranging from 0.072 to 0.205 eV. The results obtained from quantum-mechanically modified harmonic transition state theory were compared with the ones obtained from classical-limit harmonic transition state theory over a wide temperature range. The phonon spectra of hydrogenated graphene were used to closely explain the (reversed) isotope effects in the prefactor, activation energy and jump frequency of the hydrogen monomer. The kinetic properties of the hydrogen-isotope monomers were simulated under conditions of annealing for 10 minutes and of heating at a constant rate (1.0 K/s). The isotope effect was observed; that is, a hydrogen monomer of lower mass is desorbed and diffuses more easily (with lower activation energies). The results presented herein are very similar to other reported experimental observations. This study of the kinetic properties of the hydrogen monomer and many other involved implicit mechanisms provides a better understanding of the interaction between hydrogen and graphene.Comment: Accepted by J. Phys. Chem.
    corecore