The understanding of the kinetic properties of hydrogen (isotopes) adatoms on
graphene is important in many fields. The kinetic properties of
hydrogen-isotope (H, D and T) monomers were simulated using a composite method
consisting of density functional theory, density functional perturbation theory
and harmonic transition state theory. The kinetic changes of the magnetic
property and the aromatic π bond of the hydrogenated graphene during the
desorption and diffusion of the hydrogen monomer was discussed. The vibrational
zero-point energy corrections in the activation energies were found to be
significant, ranging from 0.072 to 0.205 eV. The results obtained from
quantum-mechanically modified harmonic transition state theory were compared
with the ones obtained from classical-limit harmonic transition state theory
over a wide temperature range. The phonon spectra of hydrogenated graphene were
used to closely explain the (reversed) isotope effects in the prefactor,
activation energy and jump frequency of the hydrogen monomer. The kinetic
properties of the hydrogen-isotope monomers were simulated under conditions of
annealing for 10 minutes and of heating at a constant rate (1.0 K/s). The
isotope effect was observed; that is, a hydrogen monomer of lower mass is
desorbed and diffuses more easily (with lower activation energies). The results
presented herein are very similar to other reported experimental observations.
This study of the kinetic properties of the hydrogen monomer and many other
involved implicit mechanisms provides a better understanding of the interaction
between hydrogen and graphene.Comment: Accepted by J. Phys. Chem.