1,828 research outputs found

    Property (T) for non-unital C*-algebras

    Get PDF
    Inspired by the recent work of Bekka, we study two reasonable analogues of property (T) for not necessarily unital C*-algebras. The stronger one of the two is called ``property (T)'' and the weaker one is called ``property (T_{e})''. It is shown that all non-unital C*-algebras do not have property (T) (neither do their unitalizations). Moreover, all non-unital σ\sigma-unital C*-algebras do not have property (T_e).Comment: 7 pages; to appear in J. Math. Anal. App

    The structure of preserved information in quantum processes

    Get PDF
    We introduce a general operational characterization of information-preserving structures (IPS) -- encompassing noiseless subsystems, decoherence-free subspaces, pointer bases, and error-correcting codes -- by demonstrating that they are isometric to fixed points of unital quantum processes. Using this, we show that every IPS is a matrix algebra. We further establish a structure theorem for the fixed states and observables of an arbitrary process, which unifies the Schrodinger and Heisenberg pictures, places restrictions on physically allowed kinds of information, and provides an efficient algorithm for finding all noiseless and unitarily noiseless subsystems of the process

    Seizure Classification of EEG based on Wavelet Signal Denoising Using a Novel Channel Selection Algorithm

    Get PDF
    Epilepsy is a disorder of the nervous system that can affect people of any age group. With roughly 50 million people worldwide diagnosed with the disorder, it is one of the most common neurological disorders. The EEG is an indispensable tool for diagnosis of epileptic seizures in an ideal case, as brain waves from an epileptic person will present distinct abnormalities. However, in real world situations there will often be biological and electrical noise interference, as well as the issue of a multichannel signal, which introduce a great challenge for seizure detection. For this study, the Temple University Hospital (TUH) EEG Seizure Corpus dataset was used. This paper proposes a novel channel selection method which isolates different frequency ranges within five channels. This is based upon the frequencies at which normal brain waveforms exhibit. A one second window was selected, with a 0.5 second overlap. Wavelet signal denoising was performed using Daubechies 4 wavelet decomposition, thresholding was applied using minimax soft thresholding criteria. Filter banking was used to localise frequency ranges from five specific channels. Statistical features were then derived from the outputs. After performing bagged tree classification using 500 learners, a test accuracy of 0.82 was achieved.Comment: 8 pages, 6 figures, accepted for publication at the 13th Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC

    Epileptic multi-seizure type classification using electroencephalogram signals from the Temple University Hospital Seizure Corpus:A review

    Get PDF
    Epilepsy is one of the most paramount neurological diseases, affecting about 1% of the world's population. Seizure detection and classification are difficult tasks and are ongoing challenges in biomedical signal processing to enhance medical diagnosis. This paper presents and highlights the unique frequency and amplitude information found within multiple seizure types, including their morphologies, to aid the development of future seizure classification algorithms. Whilst many published works in the literature have reported on seizure detection using electroencephalogram (EEG), there has yet to be an exhaustive review detailing multi-seizure type classification using EEG. Therefore, this paper also includes a detailed review of multi-seizure type classification performance based on the Temple University Hospital Seizure Corpus (TUSZ) dataset for focal and generalised classification, and multi-seizure type classification. Deep learning techniques have a higher overall average performance for focal and generalised classification compared to machine learning techniques, whereas hybrid deep learning approaches have the highest overall average performance for multi-seizure type classification. Finally, this paper also highlights the limitations of the TUSZ dataset and suggests some future work, including the curation of a standardised training and testing dataset from the TUSZ that would allow a proper comparison of classification methods and spur advancement in the field.</p

    Information preserving structures: A general framework for quantum zero-error information

    Get PDF
    Quantum systems carry information. Quantum theory supports at least two distinct kinds of information (classical and quantum), and a variety of different ways to encode and preserve information in physical systems. A system's ability to carry information is constrained and defined by the noise in its dynamics. This paper introduces an operational framework, using information-preserving structures to classify all the kinds of information that can be perfectly (i.e., with zero error) preserved by quantum dynamics. We prove that every perfectly preserved code has the same structure as a matrix algebra, and that preserved information can always be corrected. We also classify distinct operational criteria for preservation (e.g., "noiseless", "unitarily correctible", etc.) and introduce two new and natural criteria for measurement-stabilized and unconditionally preserved codes. Finally, for several of these operational critera, we present efficient (polynomial in the state-space dimension) algorithms to find all of a channel's information-preserving structures.Comment: 29 pages, 19 examples. Contains complete proofs for all the theorems in arXiv:0705.428

    Re-weighting of somatosensory inputs from the foot and the ankle for controlling posture during quiet standing following trunk extensor muscles fatigue

    Full text link
    The present study focused on the effects of trunk extensor muscles fatigue on postural control during quiet standing under different somatosensory conditions from the foot and the ankle. With this aim, 20 young healthy adults were asked to stand as immobile as possible in two conditions of No fatigue and Fatigue of trunk extensor muscles. In Experiment 1 (n = 10), somatosensation from the foot and the ankle was degraded by standing on a foam surface. In Experiment 2 (n = 10), somatosensation from the foot and ankle was facilitated through the increased cutaneous feedback at the foot and ankle provided by strips of athletic tape applied across both ankle joints. The centre of foot pressure displacements (CoP) were recorded using a force platform. The results showed that (1) trunk extensor muscles fatigue increased CoP displacements under normal somatosensatory conditions (Experiment 1 and Experiment 2), (2) this destabilizing effect was exacerbated when somatosensation from the foot and the ankle was degraded (Experiment 1), and (3) this destabilizing effect was mitigated when somatosensation from the foot and the ankle was facilitated (Experiment 2). Altogether, the present findings evidenced re-weighting of sensory cues for controlling posture during quiet standing following trunk extensor muscles fatigue by increasing the reliance on the somatosensory inputs from the foot and the ankle. This could have implications in clinical and rehabilitative areas

    Photon Production from Nonequilibrium Disoriented Chiral Condensates in a Spherical Expansion

    Get PDF
    We study the production of photons through the non-equilibrium relaxation of a disoriented chiral condensate formed in the expanding hot central region in ultra-relativistic heavy-ion collisions. It is found that the expansion smoothes out the resonances in the process of parametric amplification such that the non-equilibrium photons are dominant to the thermal photons over the range 0.2-2 GeV. We propose that to search for non-equilibrium photons in the direct photon measurements of heavy-ion collisions can be a potential test of the formation of disoriented chiral condensates.Comment: 13 pages, 3 figure

    Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam

    Full text link
    Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6 photons per MeV.Comment: 29 pages, 10 figures. Submitted to Astroparticle Physic

    An Overview of Recent Application of Medical Infrared Thermography in Sports Medicine in Austria

    Get PDF
    Medical infrared thermography (MIT) is used for analyzing physiological functions related to skin temperature. Technological advances have made MIT a reliable medical measurement tool. This paper provides an overview of MIT’s technical requirements and usefulness in sports medicine, with a special focus on overuse and traumatic knee injuries. Case studies are used to illustrate the clinical applicability and limitations of MIT. It is concluded that MIT is a non-invasive, non-radiating, low cost detection tool which should be applied for pre-scanning athletes in sports medicine
    • …
    corecore