Re-weighting of somatosensory inputs from the foot and the ankle for
controlling posture during quiet standing following trunk extensor muscles
fatigue
The present study focused on the effects of trunk extensor muscles fatigue on
postural control during quiet standing under different somatosensory conditions
from the foot and the ankle. With this aim, 20 young healthy adults were asked
to stand as immobile as possible in two conditions of No fatigue and Fatigue of
trunk extensor muscles. In Experiment 1 (n = 10), somatosensation from the foot
and the ankle was degraded by standing on a foam surface. In Experiment 2 (n =
10), somatosensation from the foot and ankle was facilitated through the
increased cutaneous feedback at the foot and ankle provided by strips of
athletic tape applied across both ankle joints. The centre of foot pressure
displacements (CoP) were recorded using a force platform. The results showed
that (1) trunk extensor muscles fatigue increased CoP displacements under
normal somatosensatory conditions (Experiment 1 and Experiment 2), (2) this
destabilizing effect was exacerbated when somatosensation from the foot and the
ankle was degraded (Experiment 1), and (3) this destabilizing effect was
mitigated when somatosensation from the foot and the ankle was facilitated
(Experiment 2). Altogether, the present findings evidenced re-weighting of
sensory cues for controlling posture during quiet standing following trunk
extensor muscles fatigue by increasing the reliance on the somatosensory inputs
from the foot and the ankle. This could have implications in clinical and
rehabilitative areas