378 research outputs found

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    Mitoxantrone Induces Natural Killer Cell Maturation in Patients with Secondary Progressive Multiple Sclerosis

    Get PDF
    Mitoxantrone is one of the few drugs approved for the treatment of progressive multiple sclerosis (MS). However, the prolonged use of this potent immunosuppressive agent is limited by the appearance of severe side effects. Apart from its general cytotoxic effect, the mode of action of mitoxantrone on the immune system is poorly understood. Thus, to develop safe therapeutic approaches for patients with progressive MS, it is essential to elucidate how mitoxantrone exerts it benefits. Accordingly, we initiated a prospective single-arm open-label study with 19 secondary progressive MS patients. We investigated long-term effects of mitoxantrone on patient peripheral immune subsets using flow cytometry. While we corroborate that mitoxantrone persistently suppresses B cells in vivo, we show for the first time that treatment led to an enrichment of neutrophils and immunomodulatory CD8low T cells. Moreover, sustained mitoxantrone applications promoted not only persistent NK cell enrichment but also NK cell maturation. Importantly, this mitoxantrone-induced NK cell maturation was seen only in patients that showed a clinical response to treatment. Our data emphasize the complex immunomodulatory role of mitoxantrone, which may account for its benefit in MS. In particular, these results highlight the contribution of NK cells to mitoxantrone efficacy in progressive MS

    Soluble CD14 in cerebrospinal fluid is associated with markers of inflammation and axonal damage in untreated HIV-infected patients: a retrospective cross-sectional study

    Get PDF
    Background: HIV-associated cognitive impairment has declined since the introduction of combination antiretroviral treatment (cART). However, milder forms of cognitive impairment persist. Inflammation in the cerebrospinal fluid (CSF) has been associated with cognitive impairment, and CSF neurofilament light chain protein (NFL) and CSF neopterin concentrations are increased in those patients. Microbial translocation in HIV infection has been suggested to contribute to chronic inflammation, and lipopolysaccharide (LPS) and soluble CD14 (sCD14) are markers of microbial translocation and the resulting monocyte activation, respectively. We hypothesised that microbial translocation contributes to inflammation and axonal damage in the central nervous system (CNS) in untreated HIV infection. / Methods: We analyzed paired samples of plasma and CSF from 62 HIV-infected, untreated patients without cognitive symptoms from Sahlgrenska University Hospital, Gothenburg, Sweden. Measurements of neopterin and NFL in CSF were available from previous studies. Plasma and CSF sCD14 was measured using ELISA (R&D, Minneapolis, MN), and plasma and CSF LPS was measured using LAL colorimetric assay (Lonza, Walkersville, MD, USA). Univariate and multivariate regression analyses were performed. / Results: LPS in plasma was associated with plasma sCD14 (r = 0.31, P = 0.015), and plasma sCD14 was associated with CSF sCD14 (r = 0.32, P = 0.012). Furthermore, CSF sCD14 was associated with NFL (r = 0.32, P = 0.031) and neopterin (r = 0.32, P = 0.012) in CSF. LPS was not detectable in CSF. In a multivariate regression model CSF sCD14 remained associated with NFL and neopterin after adjusting for age, CD4+ cell count, and HIV RNA in CSF. / Conclusions: In a group of untreated, HIV-infected patients LPS was associated with sCD14 in plasma, and plasma sCD14 was associated CSF sCD14. CSF sCD14 were associated with markers of CNS inflammation and axonal damage. This suggest that microbial translocation might be a driver of systemic and CNS inflammation. However, LPS was not detectable in the CSF, and since sCD14 is a marker of monocyte activation sCD14 may be increased due to other causes than microbial translocation. Further studies regarding cognitive impairment and biomarkers are warranted to fully understand causality

    Role of mprF1 and mprF2 in the Pathogenicity of Enterococcus faecalis

    Get PDF
    Aujourd hui, Enterococcus faecalis est considéré comme l un des plus importants agents pathogènes causant des maladies nosocomiales. En raison de sa résistance innée et acquise aux antibiotiques, l identification de nouvelles cibles pour le traitement de cette bactérie est une grande priorité. Le facteur Multiple Peptide Résistance (MprF), qui a été décrit en premier chez Staphylococcus aureus, modifie le phosphatidylglycérol avec de la lysine et réduit ainsi la charge négative de l enveloppe cellulaire. Ceci a comme conséquence d augmenter la résistance aux peptides antimicrobiens cationiques (PAC). Deux gènes paralogues putatifs (mprF1 et mprF2) ont été identifiés chez E. faecalis par recherche BLAST en utilisant le gène décrit chez S. aureus. Une caractérisation de ces deux gènes d E. faecalis ainsi que des mécanismes conduisant à une résistance aux PAC, pourrait aider à développer des nouvelles stratégies thérapeutiques contre ce pathogène. Deux mutants de délétion et un double mutant ont été construits par recombinaison homologue chez E. faecalis. L analyse des phospholipides des membranes cytoplasmiques des deux mutants mprF1 et mprF2 par chromatographie sur couche mince a montré que seule l inactivation de mprF2 inhibe la synthèse de trois amino-phosphatidlyglycérol distincts (comme la Lysine-PG, l Alanine-PG et l Arginine-PG). De plus, le mutant mprF2 est également plus sensible aux PAC que la souche sauvage. La capacité de formation d un biofilm est généralement considérée comme un facteur important de virulence, ce qui est également le cas pour les entérocoques. Le mutant mprF2 montre une capacité accrue dans ce phénomène. Ceci semble être du à une augmentation de la concentration d ADN extracellulaire dans le biofilm formé par ce mutant. Curieusement, cette augmentation est indépendante d une autolyse. Le mutant mprF2 est également plus résistant à l opsonophagocytose. Cependant, le gène mprF2 ne joue aucun rôle dans les bactériémies de souris et les endocardites de rats.En revanche, aucun phénotype n a été trouvé pour un mutant mprF1 jusqu à présent. Cette mutation ne modifie ni la synthèse de l aminoacyl-PG en condition de laboratoire ni la résistance aux PAC et à l opsonophagocytose. Par conséquent, il semble que mprF2 soit le seul gène mprF fonctionnel chez E. faecalis. Néanmoins, contrairement à d autres bactéries, mprF2 ne semble pas être un facteur de virulence majeur pour cette espèce.Enterococcus faecalis is regarded nowadays as one of the most important nosocomial pathogens. Due to its innate and acquired resistance to antibiotics, identification of new targets for antimicrobial treatment of E. faecalis is a high priority. The multiple peptides resistance factor (MprF), which was first described in Staphylococcus aureus, modifies phosphatidylglycerol with lysine and reduces the negative charge of the membrane, thus increasing resistance to cationic antimicrobial peptides (CAMPs). Two putative mprF paralogs (mprF1 and mprF2) were identified in E. faecalis by Blast search using the well-described S. aureus gene as a lead. A better understanding of these two genes and mechanisms leads to enterococcal resistance to CAMPs might help designing therapeutic strategies against this bacteria. Two single deletion mutants and double mutant in E. faecalis were created by homologues recombination. Analysis of cell membrane phospholipids from both mutants by thin-layer chromatography showed that inactivation of mprF2 abolished the synthesis of three distinct amino-phosphatidylglycerol (mostly likely Lysin-PG, Alanine-PG and Argine-PG). The CAMPs testing assay demonstrated that the deletion mutant of mprF2 was more susceptible to CAMPs than the wild type. Biofilm formation is usually regarded as a virulence factor which provides an important way for enterococci to cause infections. Inactivation of mprF2 led to increase the biofilm formation which we showed that it was due to the accumulation of eDNA in the biofilm, but the release of eDNA is independent from autolysis. The mprF2 mutant was resistance to killing by opsonophagocytosis more than wild type. However, the mprF2 gene plays no role in bacteremia in mice and rat endocarditis. Our results showed that non polar effect mprF1 mutant does not affect in the synthesis of aminoacyl-PG in the laboratory condition. It also has no effect on susceptible to CAMPs, opsonic killing and autolysis. Therefore, it seems that mprF2 is the only functional mprF gene in E. faecalis in the laboratory condition. Unlike mprF found in other bacteria, mprF does not seem to be a major virulence factor in enterococci.CAEN-BU Sciences et STAPS (141182103) / SudocSudocFranceF

    Hedonic Taste in Drosophila Revealed by Olfactory Receptors Expressed in Taste Neurons

    Get PDF
    Taste and olfaction are each tuned to a unique set of chemicals in the outside world, and their corresponding sensory spaces are mapped in different areas in the brain. This dichotomy matches categories of receptors detecting molecules either in the gaseous or in the liquid phase in terrestrial animals. However, in Drosophila olfactory and gustatory neurons express receptors which belong to the same family of 7-transmembrane domain proteins. Striking overlaps exist in their sequence structure and in their expression pattern, suggesting that there might be some functional commonalities between them. In this work, we tested the assumption that Drosophila olfactory receptor proteins are compatible with taste neurons by ectopically expressing an olfactory receptor (OR22a and OR83b) for which ligands are known. Using electrophysiological recordings, we show that the transformed taste neurons are excited by odor ligands as by their cognate tastants. The wiring of these neurons to the brain seems unchanged and no additional connections to the antennal lobe were detected. The odor ligands detected by the olfactory receptor acquire a new hedonic value, inducing appetitive or aversive behaviors depending on the categories of taste neurons in which they are expressed i.e. sugar- or bitter-sensing cells expressing either Gr5a or Gr66a receptors. Taste neurons expressing ectopic olfactory receptors can sense odors at close range either in the aerial phase or by contact, in a lipophilic phase. The responses of the transformed taste neurons to the odorant are similar to those obtained with tastants. The hedonic value attributed to tastants is directly linked to the taste neurons in which their receptors are expressed

    Transcriptional Profiling of the Dose Response: A More Powerful Approach for Characterizing Drug Activities

    Get PDF
    The dose response curve is the gold standard for measuring the effect of a drug treatment, but is rarely used in genomic scale transcriptional profiling due to perceived obstacles of cost and analysis. One barrier to examining transcriptional dose responses is that existing methods for microarray data analysis can identify patterns, but provide no quantitative pharmacological information. We developed analytical methods that identify transcripts responsive to dose, calculate classical pharmacological parameters such as the EC50, and enable an in-depth analysis of coordinated dose-dependent treatment effects. The approach was applied to a transcriptional profiling study that evaluated four kinase inhibitors (imatinib, nilotinib, dasatinib and PD0325901) across a six-logarithm dose range, using 12 arrays per compound. The transcript responses proved a powerful means to characterize and compare the compounds: the distribution of EC50 values for the transcriptome was linked to specific targets, dose-dependent effects on cellular processes were identified using automated pathway analysis, and a connection was seen between EC50s in standard cellular assays and transcriptional EC50s. Our approach greatly enriches the information that can be obtained from standard transcriptional profiling technology. Moreover, these methods are automated, robust to non-optimized assays, and could be applied to other sources of quantitative data

    Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies

    Get PDF
    Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low–BMI cases are larger than those estimated from high–BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1×10−9). The improvement varied across diseases with a 16% median increase in χ2 test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci
    • …
    corecore