810 research outputs found
Interplay between structure and density anomaly for an isotropic core-softened ramp-like potential
Using molecular dynamics simulations and integral equations we investigate
the structure, the thermodynamics and the dynamics of a system of particles
interacting through a continuous core- softened ramp-like interparticle
potential. We found density, dynamic and structural anomalies similar to that
found in water. Analysis of the radial distribution function for several
temperatures at fixed densities show a pattern that may be related to the
origin of density anomaly.Comment: 7 pages, 3 figure
Pulling adsorbed polymers from surfaces with the AFM: stick versus slip, peeling versus gliding
We consider the response of an adsorbed polymer that is pulled by an AFM
within a simple geometric framework. We separately consider the cases of i)
fixed polymer-surface contact point, ii) sticky case where the polymer is
peeled off from the substrate, and iii) slippery case where the polymer glides
over the surface. The resultant behavior depends on the value of the surface
friction coefficient and the adsorption strength. Our resultant force profiles
in principle allow to extract both from non-equilibrium force-spectroscopic
data.Comment: 6 pages, 3 figures; accepted for publication in Europhys. Lett.,
http://www.edpsciences.org/journal/index.cfm?edpsname=ep
Liquid crystal phase and waterlike anomalies in a core-softened shoulder-dumbbells system
Using molecular dynamics we investigate the thermodynamics, dynamics and
structure of 250 diatomic molecules interacting by a core-softened potential.
This system exhibits thermodynamics, dynamics and structural anomalies: a
maximum in density-temperature plane at constante pressure and maximum and
minimum points in the diffusivity and translational order parameter against
density at constant temperature. Starting with very dense systems and
decreasing density the mobility at low temperatures first increases, reach a
maximum, then decreases, reach a minimum and finally increases. In the
pressure-temperature phase diagram the line of maximum translational order
parameter is located outside the line of diffusivity extrema that is enclosing
the temperature of maximum density line. We compare our results with the
monomeric system showing that the anisotropy due to the dumbbell leads to a
much larger solid phase and to the appearance of a liquid crystal phase. the
double ranged thermodynamic and dynamic anomalies.Comment: 14 pages, 5 figure
Thermodynamic and Dynamic Anomalies for Dumbbell Molecules Interacting with a Repulsive Ramp-Like Potential
Using collision driven discrete molecular dynamics (DMD), we investigate the
thermodynamics and dynamics of systems of 500 dumbbell molecules interacting by
a purely repulsive ramp-like discretized potential, consisting of steps of
equal size. We compare the behavior of the two systems, with and steps. Each system exhibits both thermodynamic and dynamic anomalies, a
density maximum and the translational and rotational mobilities show anomalous
behavior. Starting with very dense systems and decreasing the density, both
mobilities first increase, reache a maximum, then decrease, reache a minimum,
and finally increase; this behavior is similar to the behavior of SPC/E water.
The regions in the pressure-temperature plane of translational and rotational
mobility anomalies depend strongly on . The product of the translational
diffusion coefficient and the orientational correlation time increases with
temperature, in contrast with the behavior of most liquids
Structural anomalies for a three dimensional isotropic core-softened potential
Using molecular dynamics simulations we investigate the structure of a system
of particles interacting through a continuous core-softened interparticle
potential. We found for the translational order parameter, t, a local maximum
at a density and a local minimum at . Between and , the parameter
anomalously decreases upon pressure. For the orientational order parameter,
, was observed a maximum at a density . For densities between and , both the
translational (t) and orientational () order parameters have anomalous
behavior. We know that this system also exhibits density and diffusion anomaly.
We found that the region in the pressure-temperature phase-diagram of the
structural anomaly englobes the region of the diffusion anomaly that is larger
than the region limited by the temperature of maximum density. This cascade of
anomalies (structural, dynamic and thermodynamic) for our model has the same
hierarchy of that one observed for the SPC/E water.Comment: 19 pages, 8 figure
Diffusion Anomaly in an Associating Lattice Gas Model
We investigate the relation between thermodynamic and dynamic properties of
an associating lattice gas (ALG) model. The ALG combines a two dimensional
lattice gas with particles interacting through a soft core potential and
orientational degrees of freedom. From the competition between the directional
attractive forces and the soft core potential results two liquid phases, double
criticality and density anomaly. We study the mobility of the molecules in this
model by calculating the diffusion constant at a constant temperature, . We
show that has a maximum at a density and a minimum at a
density . Between these densities the diffusivity
differs from the one expected for normal liquids. We also show that in the
pressure-temperature phase-diagram the line of extrema in diffusivity is close
to the liquid-liquid critical point and it is inside the temperature of maximum
density (TMD) line.Comment: 12 pages, 9 figure
Diffusion Anomaly in a three dimensional lattice gas
We investigate the relation between thermodynamic and dynamic properties of
an associating lattice gas (ALG) model. The ALG combines a three dimensional
lattice gas with particles interacting through a soft core potential and
orientational degrees of freedom. From the competition between the directional
attractive forces and the soft core potential results two liquid phases, double
criticality and density anomaly. We study the mobility of the molecules in this
model by calculating the diffusion constant at a constant temperature, . We
show that has a maximum at a density and a minimum at a
density . Between these densities the diffusivity
differs from the one expected for normal liquids. We also show that in the
pressure-temperature phase-diagram the line of extrema in diffusivity is close
to the liquid-liquid critical point and it is partially inside the temperature
of maximum density (TMD) line
Dynamic Anomalies of Fluids with Isotropic Doubled-Ranged Potential
Using molecular dynamics simulations we investigate the ability of an
analytical three-dimensional double well in reproducing static and dynamic
anomalies found experimentally in liquid water. We find anomalous behavior in
the stable region of the phase diagram if the outer minimum is deeper than the
inner minimum. In the case of a deeper inner minimum, anomalous behavior is
also present but inside the unstable region.Comment: 10 pages, two figure
- …
