research

Thermodynamic and Dynamic Anomalies for Dumbbell Molecules Interacting with a Repulsive Ramp-Like Potential

Abstract

Using collision driven discrete molecular dynamics (DMD), we investigate the thermodynamics and dynamics of systems of 500 dumbbell molecules interacting by a purely repulsive ramp-like discretized potential, consisting of nn steps of equal size. We compare the behavior of the two systems, with n=18n = 18 and n=144n = 144 steps. Each system exhibits both thermodynamic and dynamic anomalies, a density maximum and the translational and rotational mobilities show anomalous behavior. Starting with very dense systems and decreasing the density, both mobilities first increase, reache a maximum, then decrease, reache a minimum, and finally increase; this behavior is similar to the behavior of SPC/E water. The regions in the pressure-temperature plane of translational and rotational mobility anomalies depend strongly on nn. The product of the translational diffusion coefficient and the orientational correlation time increases with temperature, in contrast with the behavior of most liquids

    Similar works