730 research outputs found

    Left-right symmetry at LHC and precise 1-loop low energy data

    Get PDF
    Despite many tests, even the Minimal Manifest Left-Right Symmetric Model (MLRSM) has never been ultimately confirmed or falsified. LHC gives a new possibility to test directly the most conservative version of left-right symmetric models at so far not reachable energy scales. If we take into account precise limits on the model which come from low energy processes, like the muon decay, possible LHC signals are strongly limited through the correlations of parameters among heavy neutrinos, heavy gauge bosons and heavy Higgs particles. To illustrate the situation in the context of LHC, we consider the "golden" process pp→e+Npp \to e^+ N. For instance, in a case of degenerate heavy neutrinos and heavy Higgs masses at 15 TeV (in agreement with FCNC bounds) we get σ(pp→e+N)>10\sigma(pp \to e^+ N)>10 fb at s=14\sqrt{s}=14 TeV which is consistent with muon decay data for a very limited W2W_2 masses in the range (3008 GeV, 3040 GeV). Without restrictions coming from the muon data, W2W_2 masses would be in the range (1.0 TeV, 3.5 TeV). Influence of heavy Higgs particles themselves on the considered LHC process is negligible (the same is true for the light, SM neutral Higgs scalar analog). In the paper decay modes of the right-handed heavy gauge bosons and heavy neutrinos are also discussed. Both scenarios with typical see-saw light-heavy neutrino mixings and the mixings which are independent of heavy neutrino masses are considered. In the second case heavy neutrino decays to the heavy charged gauge bosons not necessarily dominate over decay modes which include only light, SM-like particles.Comment: 16 pages, 10 figs, KL-KS and new ATLAS limits taken into accoun

    Search for Higgs bosons of the Universal Extra Dimensions at the Large Hadron Collider

    Full text link
    The Higgs sector of the Universal Extra Dimensions (UED) has a rather involved setup. With one extra space dimension, the main ingredients to the construct are the higher Kaluza-Klein (KK) excitations of the Standard Model Higgs boson and the fifth components of the gauge fields which on compactification appear as scalar degrees of freedom and can mix with the former thus leading to physical KK-Higgs states of the scenario. In this work, we explore in detail the phenomenology of such a Higgs sector of the UED with the Large Hadron Collider (LHC) in focus. We work out relevant decay branching fractions involving the KK-Higgs excitations. Possible production modes of the KK-Higgs bosons are then discussed with an emphasis on their associated production with the third generation KK-quarks and that under the cascade decays of strongly interacting UED excitations which turn out to be the only phenomenologically significant modes. It is pointed out that the collider searches of such Higgs bosons face generic hardship due to soft end-products which result from severe degeneracies in the masses of the involved excitations in the minimal version of the UED (MUED). Generic implications of either observing some or all of the KK-Higgs bosons at the LHC are discussed.Comment: 25 pages, 9 figures and 1 tabl

    Supersymmetric Monojets at the Large Hadron Collider

    Get PDF
    Supersymmetric monojets may be produced at the Large Hadron Collider by the process qg -> squark neutralino_1 -> q neutralino_1 neutralino_1, leading to a jet recoiling against missing transverse momentum. We discuss the feasibility and utility of the supersymmetric monojet signal. In particular, we examine the possible precision with which one can ascertain the neutralino_1-squark-quark coupling via the rate for monojet events. Such a coupling contains information on the composition of the neutralino_1 and helps bound dark matter direct detection cross-sections and the dark matter relic density of the neutralino_1. It also provides a check of the supersymmetric relation between gauge couplings and gaugino-quark-squark couplings.Comment: 46 pages, 10 figures. The appendix has been rewritten to correct an error that appears in all previous versions of the appendix. This error has no effect on the results in the main body of the pape

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the ΄(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the ΄(4S) resonance are presented. Using 20.8 fb-1 of data on the ΄(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the ΄(4S) mass. The branching fractions ÎŁB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ÎŁB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Tannin- caprolactam and Tannin- PEG formulations as outdoor wood preservatives: Weathering properties

    Get PDF
    International audienceAbstractKey messageThis article presents the leaching, fire and weathering resistance improvements of samples treated with tannin-based wood preservatives added of caprolactam. PEG-added formulations show limited applicability. The FT-IR and13C-NMR analyses of the caprolactam-added formulations show some evidences of copolymerization.ContextTannin-boron wood preservatives are known for their high resistance against leaching, biological attacks, fire as well as for the good mechanical properties that they impart to wood. These properties promoted these formulations for being a candidate for the protection of green buildings. However, the low elasticity of these polymers and their dark colour implied limited weathering resistances.AimsThe aim of the study is to find suitable additives for tannin-based formulations to overcome their limited weathering resistances, without compromising the other properties.MethodsTreatment, leaching and fire tests, dimensional stability as well as artificial and natural weathering of the timber treated with caprolactam-added and PEG-added formulations were performed. FT-IR and 13C-NMR of the formulations were presented.ResultsThe presence of caprolactam improved the properties of the formulation with particularly significant results in terms of resistance against leaching and dimensional stability. These enhancements were imparted also to the weathering resistance of the tannin-caprolactam formulations. Indeed, the colour changes during the artificial and natural exposures were stable for longer periods. FT-IR and 13C-NMR investigations of the advanced formulations were led, and covalent copolymerization of the caprolactam with the tannin-hexamine polymer was observed.ConclusionThe tannin formulations with caprolactam improved the durability of the wood specimens, while the PEG-tannin presented strong application drawbacks

    Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)

    Get PDF
    Using a sample of 122 million Upsilon(3S) events recorded with the BaBar detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for the hb(1P)h_b(1P) spin-singlet partner of the P-wave chi_{bJ}(1P) states in the sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We observe an excess of events above background in the distribution of the recoil mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width of the observed signal is consistent with experimental resolution, and its significance is 3.1sigma, including systematic uncertainties. We obtain the value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Hiding a Heavy Higgs Boson at the 7 TeV LHC

    Get PDF
    A heavy Standard Model Higgs boson is not only disfavored by electroweak precision observables but is also excluded by direct searches at the 7 TeV LHC for a wide range of masses. Here, we examine scenarios where a heavy Higgs boson can be made consistent with both the indirect constraints and the direct null searches by adding only one new particle beyond the Standard Model. This new particle should be a weak multiplet in order to have additional contributions to the oblique parameters. If it is a color singlet, we find that a heavy Higgs with an intermediate mass of 200 - 300 GeV can decay into the new states, suppressing the branching ratios for the standard model modes, and thus hiding a heavy Higgs at the LHC. If the new particle is also charged under QCD, the Higgs production cross section from gluon fusion can be reduced significantly due to the new colored particle one-loop contribution. Current collider constraints on the new particles allow for viable parameter space to exist in order to hide a heavy Higgs boson. We categorize the general signatures of these new particles, identify favored regions of their parameter space and point out that discovering or excluding them at the LHC can provide important indirect information for a heavy Higgs. Finally, for a very heavy Higgs boson, beyond the search limit at the 7 TeV LHC, we discuss three additional scenarios where models would be consistent with electroweak precision tests: including an additional vector-like fermion mixing with the top quark, adding another U(1) gauge boson and modifying triple-gauge boson couplings.Comment: 42 pages, 12 figure
    • 

    corecore