77 research outputs found

    A network perspective on the topological importance of enzymes and their phylogenetic conservation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A metabolic network is the sum of all chemical transformations or reactions in the cell, with the metabolites being interconnected by enzyme-catalyzed reactions. Many enzymes exist in numerous species while others occur only in a few. We ask if there are relationships between the phylogenetic profile of an enzyme, or the number of different bacterial species that contain it, and its topological importance in the metabolic network. Our null hypothesis is that phylogenetic profile is independent of topological importance. To test our null hypothesis we constructed an enzyme network from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. We calculated three network indices of topological importance: the degree or the number of connections of a network node; closeness centrality, which measures how close a node is to others; and betweenness centrality measuring how frequently a node appears on all shortest paths between two other nodes.</p> <p>Results</p> <p>Enzyme phylogenetic profile correlates best with betweenness centrality and also quite closely with degree, but poorly with closeness centrality. Both betweenness and closeness centralities are non-local measures of topological importance and it is intriguing that they have contrasting power of predicting phylogenetic profile in bacterial species. We speculate that redundancy in an enzyme network may be reflected by betweenness centrality but not by closeness centrality. We also discuss factors influencing the correlation between phylogenetic profile and topological importance.</p> <p>Conclusion</p> <p>Our analysis falsifies the hypothesis that phylogenetic profile of enzymes is independent of enzyme network importance. Our results show that phylogenetic profile correlates better with degree and betweenness centrality, but less so with closeness centrality. Enzymes that occur in many bacterial species tend to be those that have high network importance. We speculate that this phenomenon originates in mechanisms driving network evolution. Closeness centrality reflects phylogenetic profile poorly. This is because metabolic networks often consist of distinct functional modules and some are not in the centre of the network. Enzymes in these peripheral parts of a network might be important for cell survival and should therefore occur in many bacterial species. They are, however, distant from other enzymes in the same network.</p

    The Mych Gene Is Required for Neural Crest Survival during Zebrafish Development

    Get PDF
    Background: Amomg Myc family genes, c-Myc is known to have a role in neural crest specification in Xenopus and in craniofacial development in the mouse. There is no information on the function of other Myc genes in neural crest development, or about any developmental role: of zebrafish Myc genes. Principal Findings: We isolated the zebrafish mych (myc homologue) gene. Knockdown of mych leads to sever defects in craniofacial development and in certain other tissues including the eye. These phenotypes appear to be caused by cell death in the neural crest and in the eye field in the anterior brain. Significance: Mych is a novel factor required for neural crest cell survival in zebrafish

    Differentiation of Schizophrenia Patients from Healthy Subjects by Mismatch Negativity and Neuropsychological Tests

    Get PDF
    BACKGROUND: Schizophrenia is a heterogeneous disorder with diverse presentations. The current and the proposed DSM-V diagnostic system remains phenomenologically based, despite the fact that several neurobiological and neuropsychological markers have been identified. A multivariate approach has better diagnostic utility than a single marker method. In this study, the mismatch negativity (MMN) deficit of schizophrenia was first replicated in a Han Chinese population, and then the MMN was combined with several neuropsychological measurements to differentiate schizophrenia patients from healthy subjects. METHODOLOGY/PRINCIPAL FINDINGS: 120 schizophrenia patients and 76 healthy controls were recruited. Each subject received examinations for duration MMN, Continuous Performance Test, Wisconsin Card Sorting Test, and Wechsler Adult Intelligence Scale Third Edition (WAIS-III). The MMN was compared between cases and controls, and important covariates were investigated. Schizophrenia patients had significantly reduced MMN amplitudes, and MMN decreased with increasing age in both patient and control groups. None of the neuropsychological indices correlated with MMN. Predictive multivariate logistic regression models using the MMN and neuropsychological measurements as predictors were developed. Four predictors, including MMN at electrode FCz and three scores from the WAIS-III (Arithmetic, Block Design, and Performance IQ) were retained in the final predictive model. The model performed well in differentiating patients from healthy subjects (percentage of concordant pairs: 90.5%). CONCLUSIONS/SIGNIFICANCE: MMN deficits were found in Han Chinese schizophrenia patients. The multivariate approach combining biomarkers from different modalities such as electrophysiology and neuropsychology had a better diagnostic utility

    School Effects on the Wellbeing of Children and Adolescents

    Get PDF
    Well-being is a multidimensional construct, with psychological, physical and social components. As theoretical basis to help understand this concept and how it relates to school, we propose the Self-Determination Theory, which contends that self-determined motivation and personality integration, growth and well-being are dependent on a healthy balance of three innate psychological needs of autonomy, relatedness and competence. Thus, current indicators involve school effects on children’s well-being, in many diverse modalities which have been explored. Some are described in this chapter, mainly: the importance of peer relationships; the benefits of friendship; the effects of schools in conjunction with some forms of family influence; the school climate in terms of safety and physical ecology; the relevance of the teacher input; the school goal structure and the implementation of cooperative learning. All these parameters have an influence in promoting optimal functioning among children and increasing their well-being by meeting the above mentioned needs. The empirical support for the importance of schools indicates significant small effects, which often translate into important real-life effects as it is admitted at present. The conclusion is that schools do make a difference in children’s peer relationships and well-being

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore