195 research outputs found

    Balancing the dilution and oddity effects: Decisions depend on body size

    Get PDF
    Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions

    Differential regulation of myeloid leukemias by the bone marrow microenvironment

    Get PDF
    Like their normal hematopoietic stem cell counterparts, leukemia stem cells (LSC) in chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) are presumed to reside in specific niches in the bone marrow microenvironment (BMM)1, and may be the cause of relapse following chemotherapy.2 Targeting the niche is a novel strategy to eliminate persistent and drug-resistant LSC. CD443,4 and IL-65 have been implicated previously in the LSC niche. Transforming growth factor (TGF)-β1 is released during bone remodeling6 and plays a role in maintenance of CML LSCs7, but a role for TGF-β1 from the BMM has not been defined. Here, we show that alteration of the BMM by osteoblastic cell-specific activation of the parathyroid hormone (PTH) receptor8,9 attenuates BCR-ABL1-induced CML-like myeloproliferative neoplasia (MPN)10 but enhances MLL-AF9-induced AML11 in mouse transplantation models, possibly through opposing effects of increased TGF-β1 on the respective LSC. PTH treatment caused a 15-fold decrease in LSCs in wildtype mice with CML-like MPN, and reduced engraftment of immune deficient mice with primary human CML cells. These results demonstrate that LSC niches in chronic and acute myeloid leukemias are distinct, and suggest that modulation of the BMM by PTH may be a feasible strategy to reduce LSC, a prerequisite for the cure of CML

    Boldness by habituation and social interactions: a model

    Get PDF
    Most studies of animal personality attribute personality to genetic traits. But a recent study by Magnhagen and Staffan (Behav Ecol Sociobiol 57:295–303, 2005) on young perch in small groups showed that boldness, a central personality trait, is also shaped by social interactions and by previous experience. The authors measured boldness by recording the duration that an individual spent near a predator and the speed with which it fed there. They found that duration near the predator increased over time and was higher the higher the average boldness of other group members. In addition, the feeding rate of shy individuals was reduced if other members of the same group were bold. The authors supposed that these behavioral dynamics were caused by genetic differences, social interactions, and habituation to the predator. However, they did not quantify exactly how this could happen. In the present study, we therefore use an agent-based model to investigate whether these three factors may explain the empirical findings. We choose an agent-based model because this type of model is especially suited to study the relation between behavior at an individual level and behavioral dynamics at a group level. In our model, individuals were either hiding in vegetation or feeding near a predator, whereby their behavior was affected by habituation and by two social mechanisms: social facilitation to approach the predator and competition over food. We show that even if we start the model with identical individuals, these three mechanisms were sufficient to reproduce the behavioral dynamics of the empirical study, including the consistent differences among individuals. Moreover, if we start the model with individuals that already differ in boldness, the behavioral dynamics produced remained the same. Our results indicate the importance of previous experience and social interactions when studying animal personality empirically

    Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Get PDF
    types: Journal ArticleCopyright: © 2014 Voellmy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.University of BristolBasler Stiftung für Biologische ForschungDefr

    Network position: A key component in the characterization of social personality types

    Get PDF
    In recent years, animal social interactions have received much attention in terms of personality research (e. g. aggressive or cooperative interactions). However, other components of social behaviour such as those describing the intensity, frequency, directedness and individual repeatability of interactions in animal groups have largely been neglected. Network analysis offers a valuable opportunity to characterize individual consistency of traits in labile social groups and therein provide novel insights to personality research in ways previously not possible using traditional techniques. Should individual network positions be consistently different between individuals under changing conditions, they might reflect expressions of an individual's personality. Here, we discuss a conceptual framework for using network analyses to infer the presence of individual differences and present a statistical test based on randomization techniques for testing the consistency of network positions in individuals. The statistical tools presented are useful because if particular individuals consistently occupy key positions in social networks, then this is also likely to have consequences for their fitness as well as for that of others in the population. These consequences may be particularly significant since individual network position has been shown to be important for the transmission of diseases, socially learnt information and genetic material between individuals and populations. © 2012 Springer-Verlag Berlin Heidelberg

    Early Fasting Is Long Lasting: Differences in Early Nutritional Conditions Reappear under Stressful Conditions in Adult Female Zebra Finches

    Get PDF
    Conditions experienced during early life can have profound effects on individual development and condition in adulthood. Differences in nutritional provisioning in birds during the first month of life can lead to differences in growth, reproductive success and survival. Yet, under natural conditions shorter periods of nutritional stress will be more prevalent. Individuals may respond differently, depending on the period of development during which nutritional stress was experienced. Such differences may surface specifically when poor environmental conditions challenge individuals again as adults. Here, we investigated long term consequences of differences in nutritional conditions experienced during different periods of early development by female zebra finches (Taeniopygia guttata) on measures of management and acquisition of body reserves. As nestlings or fledglings, subjects were raised under different nutritional conditions, a low or high quality diet. After subjects reached sexual maturity, we measured their sensitivity to periods of food restriction, their exploration and foraging behaviour as well as adult resting metabolic rate (RMR). During a short period of food restriction, subjects from the poor nutritional conditions had a higher body mass loss than those raised under qualitatively superior nutritional conditions. Moreover, subjects that were raised under poor nutritional conditions were faster to engage in exploratory and foraging behaviour. But RMR did not differ among treatments. These results reveal that early nutritional conditions affect adult exploratory behaviour, a representative personality trait, foraging and adult's physiological condition. As early nutritional conditions are reflected in adult phenotypic plasticity specifically when stressful situations reappear, the results suggest that costs for poor developmental conditions are paid when environmental conditions deteriorate
    • …
    corecore