80 research outputs found

    Modeling the heart

    Get PDF
    Quantitative prediction over multiple space and time scales using computer models of the electrical activity in the mammalian heart, based on membrane and intracellular ion transport and binding dynamics, digital histology, and three-dimensional cardiac anatomy and architecture

    3D finite element electrical model of larval zebrafish ECG signals

    Get PDF
    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions

    Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays. Methods: Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored. Results:The FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v 1 ST ), intermediate (v 2 ST ) and least (v 3 ST ) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e 1 DTI ), intermediate (e 2 DTI ) and least (e 3 DTI ) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v 1 ST ) agreed well with that of diffusion (e 1 DTI ) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v 3 ST ) and diffusion (e 3 ST ) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v 3 ST ) and DTI (e 3 DTI ) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v 3 ST and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v 3 DTI and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s2 and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored. Conclusions: We show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations

    Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy

    Get PDF
    Next to clinical and experimental research, mathematical modeling plays a crucial role in medicine. Biomedical research takes place on many different levels, from molecules to the whole organism. Due to the complexity of biological systems, the interactions between components are often difficult or impossible to understand without the help of mathematical models. Mathematical models of cardiac electrophysiology have made a tremendous progress since the first numerical ECG simulations in the 1960s. This paper briefly reviews the development of this field and discusses some example cases where models have helped us forward, emphasizing applications that are relevant for the study of heart failure and cardiac resynchronization therapy

    Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

    Get PDF
    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model

    Effects of amiodarone on short QT syndrome variant 3 in human ventricles: a simulation study.

    Get PDF
    Background Short QT syndrome (SQTS) is a newly identified clinical disorder associated with atrial and/or ventricular arrhythmias and increased risk of sudden cardiac death (SCD). The SQTS variant 3 is linked to D172N mutation to the KCNJ2 gene that causes a gain-of-function to the inward rectifier potassium channel current (I K1), which shortens the ventricular action potential duration (APD) and effective refractory period (ERP). Pro-arrhythmogenic effects of SQTS have been characterized, but less is known about the possible pharmacological treatment of SQTS. Therefore, in this study, we used computational modeling to assess the effects of amiodarone, class III anti-arrhythmic agent, on human ventricular electrophysiology in SQT3. Methods The ten Tusscher et al. model for the human ventricular action potentials (APs) was modified to incorporate I K1 formulations based on experimental data of Kir2.1 channels (including WT, WT-D172N and D172N conditions). The modified cell model was then implemented to construct one-dimensional (1D) and 2D tissue models. The blocking effects of amiodarone on ionic currents were modeled using IC50 and Hill coefficient values from literatures. Effects of amiodarone on APD, ERP and pseudo-ECG traces were computed. Effects of the drug on the temporal and spatial vulnerability of ventricular tissue to genesis and maintenance of re-entry were measured, as well as on the dynamic behavior of re-entry. Results Amiodarone prolonged the ventricular cell APD and decreased the maximal voltage heterogeneity (δV) among three difference cells types across transmural ventricular wall, leading to a decreased transmural heterogeneity of APD along a 1D model of ventricular transmural strand. Amiodarone increased cellular ERP, prolonged QT interval and decreased the T-wave amplitude. It reduced tissue’s temporal susceptibility to the initiation of re-entry and increased the minimum substrate size necessary to sustain re-entry in the 2D tissue. Conclusions At the therapeutic-relevant concentration of amiodarone, the APD and ERP at the single cell level were increased significantly. The QT interval in pseudo-ECG was prolonged and the re-entry in tissue was prevented. This study provides further evidence that amiodarone may be a potential pharmacological agent for preventing arrhythmogenesis for SQT3 patients
    • …
    corecore