253 research outputs found
Escherichia coli induces apoptosis and proliferation of mammary cells
Mammary cell apoptosis and proliferation were assessed after injection of Escherichia coli into the left mammary quarters of six cows. Bacteriological analysis of foremilk samples revealed coliform infection in the injected quarters of four cows. Milk somatic cell counts increased in these quarters and peaked at 24 h after bacterial injection. Body temperature also increased, peaking at 12 h postinjection, The number of apoptotic cells was significantly higher in the mastitic tissue than in the uninfected control. Expression of Bax and interleukin-1 beta converting enzyme increased in the mastitic tissue at 24 h and 72 h postinfection, whereas Bcl-2 expression decreased at 24 h but did not differ significantly from the control at 72 h postinfection, Induction of matrix metalloproteinase-g, stromelysin-1 and urokinase-type plasminogen activator was also observed in the mastitic tissue. Moreover, cell proliferation increased in the infected tissue, These results demonstrate that Escherichia coli-induced mastitis promotes apoptosis and cell proliferation
Minimal Proteinuria One Year after Transplant is a Risk Factor for Graft Survival in Kidney Transplantation
It is generally accepted that one-year post-transplant proteinuria over 0.5 gm per day has a negative impact on renal graft survival. In this study, the effects of minimal proteinuria less than 0.5 g/day were analyzed in 272 renal recipients who had survived for one year with a functioning graft. Recipients were classified by one-year post-transplant proteinuria: no proteinuria group (<0.2 g/day), minimal proteinuria group (0.2-0.5 g/day), and overt proteinuria group (≥0.5 g/day). Recipients were followed up for 87.1±21 months after transplantation and 38 (13.9%) lost their graft during follow-up. Fifteen percent of patients had minimal proteinuria and 7.8% had overt proteinuria. Five-year graft survival in the minimal proteinuria group was 83.0%, and that in the overt proteinuria group was 70%, in contrast to 97.1% in the no proteinuria group (p=0.01 for trend). In a multivariate analysis, the minimal proteinuria group (relative risk [RR], 4.90; 95% confidence interval [CI], 2.09-11.46) and the overt proteinuria group (RR, 8.75; 95% CI, 3.29-23.29) had higher risks of graft failure than the no proteinuria group. Even minimal proteinuria at one year after transplantation was strongly associated with poor graft outcome. Therefore, it appears logical to consider a low level of proteinuria as a risk factor for graft survival in renal recipients
Variation in the Ovine Abomasal Lymph Node Transcriptome between Breeds Known to Differ in Resistance to the Gastrointestinal Nematode
Texel lambs are known to be more resistant to gastrointestinal nematode (GIN) infection than Suffolk lambs, with a greater ability to limit infection. The objectives of this study were to: 1) profile the whole transcriptome of abomasal lymph node tissue of GIN-free Texel and Suffolk lambs; 2) identify differentially expressed genes and characterize the immune-related biological pathways and networks associated with these genes. Abomasal lymph nodes were collected from Texel (n = 6) and Suffolk (n = 4) lambs aged 19 weeks that had been GIN-free since 6 weeks of age. Whole transcriptome profiling was performed using RNA-seq on the Illumina platform. At the time of conducting this study, a well annotated Ovine genome was not available and hence the sequence reads were aligned with the Bovine (UMD3.1) genome. Identification of differentially expressed genes was followed by pathway and network analysis. The Suffolk breed accounted for significantly more of the differentially expressed genes, (276 more highly expressed in Suffolk v 162 in Texel; P < 0.001). The four most significant differentially expressed pathways were all related to immunity and were classified as: Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses, Activation of IRF by Cytosolic Pattern Recognition Receptors, Role of RIG-I-like Receptors in Antiviral Innate Immunity, and Interferon Signaling. Of significance is the fact that all of these four pathways were more highly expressed in the Suffolk. These data suggest that in a GIN-free environment, Suffolk lambs have a more active immune profile relative to the Texel: this immune profile may contribute to the poorer efficiency of response to a GIN challenge in the Suffolk breed compared to the Texel breed
Recommended from our members
Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium
Chromium deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells
The effect of the presence of an Fe–Cr alloy metallic interconnect on the performance and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes is studied for the first time under solid oxide electrolysis cell (SOEC) operating conditions at 800 °C. The presence of the Fe–Cr interconnect accelerates the degradation and delamination processes of the LSM oxygen electrodes. The disintegration of LSM particles and the formation of nanoparticles at the electrode/electrolyte interface are much faster as compared to that in the absence of the interconnect. Cr deposition occurs in the bulk of the LSM oxygen electrode with a high intensity on the YSZ electrolyte surface and on the LSM electrode inner surface close to the electrode/electrolyte interface. SIMS, GI-XRD, EDS and XPS analyses clearly identify the deposition and formation of chromium oxides and strontium chromate on both the electrolyte surface and electrode inner surface. The anodic polarization promotes the surface segregation of SrO and depresses the generation of manganese species such as Mn2+. This is evidently supported by the observation of the deposition of SrCrO4, rather than (Cr,Mn)3O4 spinels as in the case under the operating conditions of solid oxide fuel cells. The present results demonstrate that the Cr deposition is essentially a chemical process, initiated by the nucleation and grain growth reaction between the gaseous Cr species and segregated SrO on LSM oxygen electrodes under SOEC operating conditions
Longitudinal Study of the Dynamics of Vaginal Microflora during Two Consecutive Menstrual Cycles
Although the vaginal microflora (VMF) has been well studied, information on the fluctuation of the different bacterial species throughout the menstrual cycle and the information on events preceding the presence of disturbed VMF is still very limited. Documenting the dynamics of the VMF during the menstrual cycle might provide better insights. In this study, we assessed the presence of different Lactobacillus species in relation to the BV associated species during the menstrual cycle, assessed the influence of the menstrual cycle on the different categories of vaginal microflora and assessed possible causes, such as menstruation and sexual intercourse, of VMF disturbance. To our knowledge, this is the first longitudinal study in which swabs and Gram stains were available for each day of two consecutive menstrual cycles, whereby 8 grades of VMF were distinguished by Gram stain analysis, and whereby the swabs were cultured every 7(th) day and identification of the bacterial isolates was carried out with a molecular technique.status: publishe
Widespread impact of horizontal gene transfer on plant colonization of land
In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants
Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration
Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric
muscle loss (VML). Therapeutic approaches involving acellular matrices represent an
emerging and promising strategy to promote regeneration of skeletal muscle following injury.
Here we investigated the ability of three different decellularised skeletal muscle scaffolds to
support muscle regeneration in a xenogeneic immune-competent model of VML, in which
the EDL muscle was surgically resected. All implanted acellular matrices, used to replace
the resected muscles, were able to generate functional artificial muscles by promoting host
myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and
satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix
(ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of
SC pool, when compared to scaffolds which also preserved muscular cytoskeletal
structures. Finally, we showed that fibroblasts are indispensable to promote efficient
migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis
- …