103 research outputs found

    Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Inclusive and differential measurements of the top–antitop (tt¯) charge asymmetry Att¯C and the leptonic asymmetry Aℓℓ¯C are presented in proton–proton collisions at s√ = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive tt¯ charge asymmetry is measured to be Att¯C = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the tt¯ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients

    Search for third-generation vector-like leptons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for vector-like leptons in multilepton (two, three, or four-or-more electrons plus muons) final states with zero or more hadronic τ-lepton decays is presented. The search is performed using a dataset corresponding to an integrated luminosity of 139 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. To maximize the separation of signal and background, a machine-learning classifier is used. No excess of events is observed beyond the Standard Model expectation. Using a doublet vector-like lepton model, vector-like leptons coupling to third-generation Standard Model leptons are excluded in the mass range from 130 GeV to 900 GeV at the 95% confidence level, while the highest excluded mass is expected to be 970 GeV

    Search for excited τ-leptons and leptoquarks in the final state with τ-leptons and jets in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search is reported for excited τ-leptons and leptoquarks in events with two hadronically decaying τ-leptons and two or more jets. The search uses proton-proton (pp) collision data at s√ = 13 TeV recorded by the ATLAS experiment during the Run 2 of the Large Hadron Collider in 2015–2018. The total integrated luminosity is 139 fb−1. The excited τ-lepton is assumed to be produced and to decay via a four-fermion contact interaction into an ordinary τ-lepton and a quark-antiquark pair. The leptoquarks are assumed to be produced in pairs via the strong interaction, and each leptoquark is assumed to couple to a charm or lighter quark and a τ-lepton. No excess over the background prediction is observed. Excited τ-leptons with masses below 2.8 TeV are excluded at 95% CL in scenarios with the contact interaction scale Λ set to 10 TeV. At the extreme limit of model validity where Λ is set equal to the excited τ-lepton mass, excited τ-leptons with masses below 4.6 TeV are excluded. Leptoquarks with masses below 1.3 TeV are excluded at 95% CL if their branching ratio to a charm quark and a τ-lepton equals 1. The analysis does not exploit flavour-tagging in the signal region

    Measurements of Zγ+jets differential cross sections in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Differential cross-section measurements of Zγ production in association with hadronic jets are presented, using the full 139 fb−1 dataset of s√ = 13 TeV proton–proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the Z boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLOPS, as well as next-to-leading-order predictions from MADGRAPH5_AMC@NLO and SHERPA

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Measurement of the charge asymmetry in top-quark pair production in association with a photon with the ATLAS experiment

    Get PDF
    A measurement of the charge asymmetry in top-quark pair (tt¯) production in association with a photon is presented. The measurement is performed in the single-lepton tt¯ decay channel using proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN at a centre-of-massenergy of 13 TeV during the years 2015–2018, corresponding to an integrated luminosity of 139 fb−1. The charge asymmetry is obtained from the distribution of the difference of the absolute rapidities of the top quark and antiquark using a profile likelihood unfolding approach. It is measured to be AC = −0.003 ± 0.029 in agreement with the Standard Model expectation

    A search for new resonances in multiple final states with a high transverse momentum Z boson in s√ = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A generic search for resonances is performed with events containing a Z boson with transverse momentum greater than 100 GeV, decaying into e+e− or μ+μ−. The analysed data collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider correspond to an integrated luminosity of 139 fb−1. Two invariant mass distributions are examined for a localised excess relative to the expected Standard Model background in six independent event categories (and their inclusive sum) to increase the sensitivity. No significant excess is observed. Exclusion limits at 95% confidence level are derived for two cases: a model-independent interpretation of Gaussian-shaped resonances with the mass width between 3% and 10% of the resonance mass, and a specific heavy vector triplet model with the decay mode W′ → ZW → ℓℓqq

    Search for single production of vector-like T quarks decaying into Ht or Zt in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a search for the single production of an up-type vector-like quark (T) decaying as T → Ht or T → Zt. The search utilises a dataset of pp collisions at s√ = 13 TeV collected with the ATLAS detector during the 2015–2018 data-taking period of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Data are analysed in final states containing a single lepton with multiple jets and b-jets. The presence of boosted heavy resonances in the event is exploited to discriminate the signal from the Standard Model background. No significant excess above the Standard Model expectation is observed, and 95% CL upper limits are set on the production cross section of T quarks in different decay channels. The results are interpreted in several benchmark scenarios to set limits on the mass and universal coupling strength (κ) of the vector-like quark. For singlet T quarks, κ values above 0.53 are excluded for all masses below 2.3 TeV. At a mass of 1.6 TeV, κ values as low as 0.35 are excluded. For T quarks in the doublet scenario, where the production cross section is much lower, κ values above 0.72 are excluded for all masses below 1.7 TeV, and this exclusion is extended to κ above 0.55 for low masses around 1.0 TeV

    Measurement of the cross-sections of the electroweak and total production of a Zγ pair in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This Letter presents the measurement of the fiducial and differential cross-sections of the electroweak production of a Zγ pair in association with two jets. The analysis uses 140 fb−1 of LHC proton–proton collision data taken at √s = 13 TeV recorded by the ATLAS detector during the years 2015–2018. Events with a Z boson candidate decaying into either an e+e− or μ+μ− pair, a photon and two jets are selected. The electroweak component is extracted by requiring a large dijet invariant mass and by using the information about the centrality of the system and is measured with an observed and expected significance well above five standard deviations. The fiducial pp → Zγ jj cross-section for the electroweak production is measured to be 3.6 ± 0.5 fb. The total fiducial cross-section that also includes contributions where the jets arise from strong interactions is measured to be 16.8+2.0 −1.8 fb. The results are consistent with the Standard Model predictions. Differential cross-sections are also measured using the same events and are compared with parton-shower Monte Carlo simulations. Good agreement is observed between data and predictions

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme
    corecore