19 research outputs found

    An environmental social marketing intervention in cultural heritage tourism: a realist evaluation

    Get PDF
    Following Pawson and Tilley's principles of realist evaluation and the context–mechanism–outcome (CMO) framework, this paper conducts a process evaluation of an environmental social marketing intervention in a heritage tourism organisation. Social marketing and employee environmental interventions have received relatively scant attention in tourism. Additionally, prior literature mostly focused on the evaluation of intervention outcomes (i.e. how far the intervention produces precise targeted outcomes) and ignores the importance of process evaluation (i.e. identifying what works, for whom, under which circumstances and how, plus issues of intervention maintenance). This paper fills this literature gap using realist evaluation theory and academic perspectives, as well as via the reflections of practitioners involved in intervention design and delivery. Findings suggest that a good understanding of the tourism and organisational context (regarding the dimensions of structure, culture, agency and relations) and the use of tailored, action-focused mechanisms (for each context dimension) are critical to achieving transformational outcomes in environmental interventions in cultural heritage organisations. Based on these findings, it is concluded that the CMO is a useful framework for assessing environmental social marketing interventions in tourism (both for heritage and other tourism organisations). Implications for tourism practice and further research directions are also discusse

    Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder

    Get PDF
    This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch

    Atomic structure, electron-impact excitation and collisional-radiative modelling for Ar II

    No full text
    The spectra from singly ionized argon Ar II has significant diagnostic capability in the characterisation and modelling of both magnetically-confined fusion and astrophysical plasmas. The literature has several pre-existing data sets for Ar + but this paper presents the results from 3 new atomic structure and electron-impact scattering models in order to better constrain the differences in atomic data and how they impact well-known plasma diagnostics. Several independent atomic structure methodologies are employed to calculate the energy levels and transition probabilities for each model. The first approach employs a relativistic Dirac-Coulomb Hamiltonian model, the second approach uses a semi-relativistic Breit–Pauli Hamiltonian with the mass-velocity, Darwin and spin–orbit corrections, and in a third case an ICFT approach. Three atomic structure models provide a foundation for Dirac R-matrix, a semi-relativistic ICFT (Intermediate Coupling Frame Transformation) and a Breit–Pauli R-Matrix with Pseudostates (BPRMPS) calculation. Synthetic spectra utilizing these three data sets are compared against measurements taken at the Compact Toroidal Hybrid (CTH) stellerator, and the total radiative power loss is also benchmarked against previous calculations

    Atomic structure, electron-impact excitation and collisional-radiative modelling for Ar II

    No full text
    The spectra from singly ionized argon Ar II has significant diagnostic capability in the characterisation and modelling of both magnetically-confined fusion and astrophysical plasmas. The literature has several pre-existing data sets for Ar + but this paper presents the results from 3 new atomic structure and electron-impact scattering models in order to better constrain the differences in atomic data and how they impact well-known plasma diagnostics. Several independent atomic structure methodologies are employed to calculate the energy levels and transition probabilities for each model. The first approach employs a relativistic Dirac-Coulomb Hamiltonian model, the second approach uses a semi-relativistic Breit–Pauli Hamiltonian with the mass-velocity, Darwin and spin–orbit corrections, and in a third case an ICFT approach. Three atomic structure models provide a foundation for Dirac R-matrix, a semi-relativistic ICFT (Intermediate Coupling Frame Transformation) and a Breit–Pauli R-Matrix with Pseudostates (BPRMPS) calculation. Synthetic spectra utilizing these three data sets are compared against measurements taken at the Compact Toroidal Hybrid (CTH) stellerator, and the total radiative power loss is also benchmarked against previous calculations.<br/

    Weight-Loss Drugs

    No full text
    corecore