535 research outputs found

    Updated opacities from the opacity project

    Get PDF
    Using the code autostructure, extensive calculations of inner-shell atomic data have been made for the chemical elements He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe and Ni. The results are used to obtain updated opacities from the Opacity Project (OP). A number of other improvements on earlier work have also been included. Rosseland-mean opacities from the OP are compared with those from OPAL. Differences of 5-10 per cent occur. The OP gives the 'Z-bump', at log(T) 5.2, to be shifted to slightly higher temperatures. The opacities from the OP, as functions of temperature and density, are smoother than those from OPAL. The accuracy of the integrations used to obtain mean opacities can depend on the frequency mesh used. Tests involving variation of the numbers of frequency points show that for typical chemical mixtures the OP integrations are numerically correct to within 0.1 per cent. The accuracy of the interpolations used to obtain mean opacities for any required values of temperature and density depends on the temperature-density meshes used. Extensive tests show that, for all cases of practical interest, the OP interpolations give results correct to better than 1 per cent. Prior to a number of recent investigations which have indicated a need for downward revisions in the solar abundances of oxygen and other elements, there was good agreement between properties of the Sun deduced from helioseismology and from stellar evolution models calculated using OPAL opacities. The revisions destroy that agreement. In a recent paper, Bahcall et al. argue that the agreement would be restored if opacities for the regions of the Sun with 2 × 106T 5 × 106 K (0.7-0.4 R) were larger than those given by OPAL by about 10 per cent. In the region concerned, the present results from the OP do not differ from those of OPAL by more than 2.5 per cent

    Observational Constraints on Cosmological Models with the Updated Long Gamma-Ray Bursts

    Full text link
    In the present work, by the help of the newly released Union2 compilation which consists of 557 Type Ia supernovae (SNIa), we calibrate 109 long Gamma-Ray Bursts (GRBs) with the well-known Amati relation, using the cosmology-independent calibration method proposed by Liang {\it et al.}. We have obtained 59 calibrated high-redshift GRBs which can be used to constrain cosmological models without the circularity problem (we call them ``Hymnium'' GRBs sample for convenience). Then, we consider the joint constraints on 7 cosmological models from the latest observational data, namely, the combination of 557 Union2 SNIa dataset, 59 calibrated Hymnium GRBs dataset (obtained in this work), the shift parameter RR from the WMAP 7-year data, and the distance parameter AA of the measurement of the baryon acoustic oscillation (BAO) peak in the distribution of SDSS luminous red galaxies. We also briefly consider the comparison of these 7 cosmological models.Comment: 19 pages, 3 tables, 10 figures, revtex4; v2: accepted for publication in JCAP; v3: published versio

    Cosmological Constraints from calibrated Yonetoku and Amati relation implies Fundamental plane of Gamma-ray bursts

    Full text link
    We consider two empirical relations using data only from the prompt emission of Gamma-Ray Bursts (GRBs), peak energy (EpE_p) - peak luminosity (LpL_p) relation (so called Yonetoku relation) and EpE_p-isotropic energy (EisoE_{\rm iso}) relation (so called Amati relation). We first suggest the independence of the two relations although they have been considered similar and dependent. From this viewpoint, we compare constraints on cosmological parameters, Ωm\Omega_m and ΩΛ\Omega_{\Lambda}, from the Yonetoku and Amati relations calibrated by low-redshift GRBs with z<1.8z < 1.8. We found that they are different in 1-σ\sigma level, although they are still consistent in 2-σ\sigma level. This and the fact that both Amati and Yonetoku relations have systematic errors larger than statistical errors suggest the existence of a hidden parameter of GRBs. We introduce the luminosity time TLT_L defined by TLEiso/LpT_L\equiv E_{\rm iso}/L_p as a hidden parameter to obtain a generalized Yonetoku relation as (Lp/1052ergs1)=103.88±0.09(Ep/keV)1.84±0.04(TL/s)0.34±0.04(L_p/{10^{52} \rm{erg s^{-1}}}) = 10^{-3.88\pm0.09}(E_p/{\rm{keV}})^{1.84\pm0.04} (T_L/{\rm{s}})^{-0.34\pm0.04}. The new relation has much smaller systematic error, 30%, and can be regarded as "Fundamental plane" of GRBs. We show a possible radiation model for this new relation. Finally we apply the new relation for high-redshift GRBs with 1.8<z<5.61.8 < z < 5.6 to obtain (Ωm,ΩΛ)=(0.160.06+0.04,1.200.09+0.03)(\Omega_m,\Omega_{\Lambda}) = (0.16^{+0.04}_{-0.06},1.20^{+0.03}_{-0.09}), which is consistent with the concordance cosmological model within 2-σ\sigma level.Comment: 5 pages, 6 figures, published in JCA

    Probing bulk viscous matter-dominated models with Gamma-ray bursts

    Full text link
    In this paper we extend the range of consistency of a constant bulk viscosity model to redshifts up to z8.1z\sim 8.1. In this model the dark sector of the cosmic substratum is a viscous fluid with pressure p=ζθp= -\zeta \theta, where θ\theta is the fluid-expansion scalar and ζ\zeta is the coefficient of bulk viscosity. Using the sample of 59 high-redshift GRBs reported by Wei (2010), we calibrate GRBs at low redshifts with the Union 2 sample of SNe Ia, avoiding then the circularity problem. Testing the constant bulk viscosity model with GRBs we found the best fit for the viscosity parameter ζ~\tilde{\zeta} in the range 0<ζ~<30<\tilde{\zeta}<3, being so consistent with previous probes; we also determined the deceleration parameter q0q_0 and the redshift of transition to accelerated expansion. Besides we present an updated analysis of the model with CMB5-year data and CMB7-year data, as well as with the baryon acoustic peak BAO. From the statistics with CMB it turns out that the model does not describe in a feasible way the far far epoch of recombination of the universe, but is in very good concordance for epochs as far as z8.1z\sim 8.1 till present.Comment: 11 pages, 3 figures, submitted to JCA

    Effective theory of the Delta(1232) in Compton scattering off the nucleon

    Full text link
    We formulate a new power-counting scheme for a chiral effective field theory of nucleons, pions, and Deltas. This extends chiral perturbation theory into the Delta-resonance region. We calculate nucleon Compton scattering up to next-to-leading order in this theory. The resultant description of existing γ\gammap cross section data is very good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent polarizabilities αp\alpha_p and βp\beta_p.Comment: 29 pp, 9 figs. Minor revisions. To be published in PR

    Resonances of low orders in the planetary system of HD37124

    Full text link
    The full set of published radial velocity data (52 measurements from Keck + 58 ones from ELODIE + 17 ones from CORALIE) for the star HD37124 is analysed. Two families of dynamically stable high-eccentricity orbital solutions for the planetary system are found. In the first one, the outer planets c and d are trapped in the 2/1 mean-motion resonance. The second family of solutions corresponds to the 5/2 mean-motion resonance between these planets. In both families, the planets are locked in (or close to) an apsidal corotation resonance. In the case of the 2/1 MMR, it is an asymmetric apsidal corotation (with the difference between the longitudes of periastra Δω60\Delta\omega\sim 60^\circ), whereas in the case of the 5/2 MMR it is a symmetric antialigned one (Δω=180\Delta\omega = 180^\circ). It remains also possible that the two outer planets are not trapped in an orbital resonance. Then their orbital eccentricities should be relatively small (less than, say, 0.15) and the ratio of their orbital periods is unlikely to exceed 2.32.52.3-2.5.Comment: 28 pages, 10 figures, 3 tables; Accepted to Celestial Mechanics and Dynamical Astronom

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
    corecore