154 research outputs found

    Transformations of coordinates and Hamiltonian formalism in deformed Special Relativity

    Full text link
    We investigate the transformation laws of coordinates in generalizations of special relativity with two observer-independent scales. The request of covariance leads to simple formulas if one assumes noncanonical Poisson brackets, corresponding to noncommuting spacetime coordinates.Comment: 11 pages, plain LaTe

    Deformed Boost Transformations That Saturate at the Planck Scale

    Get PDF
    We derive finite boost transformations based on the Lorentz sector of the bicross-product-basis κ\kappa-Poincare' Hopf albegra. We emphasize the role of these boost transformations in a recently-proposed new relativistic theory. We find that when the (dimensionful) deformation parameter is identified with the Planck length, which together with the speed-of-light constant has the status of observer-independent scale in the new relativistic theory, the deformed boosts saturate at the value of momentum that corresponds to the inverse of the Planck length.Comment: 6 pages, LaTex (revtex

    TeV Astrophysics Constraints on Planck Scale Lorentz Violation

    Get PDF
    We analyze observational constraints from TeV astrophysics on Lorentz violating nonlinear dispersion for photons and electrons without assuming any a priori equality between the photon and electron parameters. The constraints arise from thresholds for vacuum Cerenkov radiation, photon decay and photo-production of electron-positron pairs. We show that the parameter plane for cubic momentum terms in the dispersion relations is constrained to an order unity region in Planck units. We find that the threshold configuration can occur with an asymmetric distribution of momentum for pair creation, and with a hard photon for vacuum Cerenkov radiation.Comment: 4 pages, RevTeX4, 1 figure. Some references and a footnote added, improved discussion on the photon annihilation and GZK cutoff. Minor changes of wording. Main results unchanged. Version to appear as a Rapid Communication in PR

    2+1 gravity and Doubly Special Relativity

    Full text link
    It is shown that gravity in 2+1 dimensions coupled to point particles provides a nontrivial example of Doubly Special Relativity (DSR). This result is obtained by interpretation of previous results in the field and by exhibiting an explicit transformation between the phase space algebra for one particle in 2+1 gravity found by Matschull and Welling and the corresponding DSR algebra. The identification of 2+1 gravity as a DSRDSR system answers a number of questions concerning the latter, and resolves the ambiguity of the basis of the algebra of observables. Based on this observation a heuristic argument is made that the algebra of symmetries of ultra high energy particle kinematics in 3+1 dimensions is described by some DSR theory.Comment: 8 pages Latex, no figures, typos correcte

    Covariant realizations of kappa-deformed space

    Get PDF
    We study a Lie algebra type κ\kappa-deformed space with undeformed rotation algebra and commutative vector-like Dirac derivatives in a covariant way. Space deformation depends on an arbitrary vector. Infinitely many covariant realizations in terms of commuting coordinates of undeformed space and their derivatives are constructed. The corresponding coproducts and star products are found and related in a new way. All covariant realizations are physically equivalent. Specially, a few simple realizations are found and discussed. The scalar fields, invariants and the notion of invariant integration is discussed in the natural realization.Comment: 31 pages, no figures, LaTe

    Phenomenology of Particle Production and Propagation in String-Motivated Canonical Noncommutative Spacetime

    Full text link
    We outline a phenomenological programme for the search of effects induced by (string-motivated) canonical noncommutative spacetime. The tests we propose are based, in analogy with a corresponding programme developed over the last few years for the study of Lie-algebra noncommutative spacetimes, on the role of the noncommutativity parameters in the E(p)E(p) dispersion relation. We focus on the role of deformed dispersion relations in particle-production collision processes, where the noncommutativity parameters would affect the threshold equation, and in the dispersion of gamma rays observed from distant astrophysical sources. We emphasize that the studies here proposed have the advantage of involving particles of relatively high energies, and may therefore be less sensitive to "contamination" (through IR/UV mixing) from the UV sector of the theory. We also explore the possibility that the relevant deformation of the dispersion relations could be responsible for the experimentally-observed violations of the GZK cutoff for cosmic rays and could have a role in the observation of hard photons from distant astrophysical sources.Comment: With respect to the experimental information available at the time of writing version 1 of this manuscript (hep-th/0109191v1) the situation has evolved significantly. Our remarks on the benefits of high-energy observations found additional encouragement from the results reported in hep-th/020925

    Topics in Noncommutative Geometry Inspired Physics

    Full text link
    In this review article we discuss some of the applications of noncommutative geometry in physics that are of recent interest, such as noncommutative many-body systems, noncommutative extension of Special Theory of Relativity kinematics, twisted gauge theories and noncommutative gravity.Comment: New references added, Published online in Foundations of Physic

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
    corecore