317 research outputs found

    Imaging the dynamics of magma propagation using radiated seismic intensity.

    No full text
    International audienceAt shallow depth beneath the Earth's surface, magma propagates through strongly heterogeneous volcanic material. Inversion of buoyancy and/or solidification have strong impacts on the dynamics of propagation without any change of magma supply. In this paper, we study the spatial and time evolution of magma intrusions using induced seismicity. We propose a new method based on ratio analysis of estimates of radiated seismic intensities recorded at different stations during seismic swarms. By applying this method to the January 2010 Piton de la Fournaise volcano eruption, we image complex dike propagation dynamics which strongly differ from a model of constant velocity dike propagation. We provide a new method to image in real time the dynamics of dike propagation and to infer the position of eruptive fissures

    Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise.

    Get PDF
    International audienceTemporal variations in the elastic behaviour of the Earth's crust can be monitored through the analysis of the Earth's seismic response and its evolution with time. This kind of analysis is particularly interesting when combined with the reconstruction of seismic Green's functions from the cross-correlation of ambient seismic noise, which circumvents the limitations imposed by a dependence on the occurrence of seismic events. In fact, because seismic noise is recorded continuously and does not depend on earthquake sources, these cross-correlation functions can be considered analogously to records from continuously repeating doublet sources placed at each station, and can be used to extract observations of variations in seismic velocities. These variations, however, are typically very small: of the order of 0.1 per cent. Such accuracy can be only achieved through the analysis of the full reconstructed waveforms, including later scattered arrivals. We focus on the method known as Moving-Window Cross-Spectral Analysis that has the advantage of operating in the frequency domain, where the bandwidth of coherent signal in the correlation function can be clearly defined. We investigate the sensitivity of this method by applying it to microseismic noise cross-correlations which have been perturbed by small synthetic velocity variations and which have been randomly contaminated. We propose threshold signal-to-noise ratios above which these perturbations can be reliably observed. Such values are a proxy for cross-correlation convergence, and so can be used as a guideline when determining the length of microseismic noise records that are required before they can be used for monitoring with the moving-window cross-spectral technique

    Variations of crustal elastic properties during the 2009 L'Aquila earthquake inferred from cross-correlations of ambient seismic noise.

    Get PDF
    International audienceWe retrieve seismic velocity variations within the Earth's crust in the region of L'Aquila (central Italy) by analyzing cross-correlations of more than two years of continuous seismic records. The studied period includes the April 6, 2009, Mw 6.1 L'Aquila earthquake. We observe a decrease of seismic velocities as a result of the earthquake's main shock. After performing the analysis in different frequency bands between 0.1 and 1 Hz, we conclude that the velocity variations are strongest at relatively high frequencies (0.5-1 Hz) suggesting that they are mostly related to the damage in the shallow soft layers resulting from the co-seismic shaking

    Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models.

    Get PDF
    International audienceWe analyze global microseism excitation patterns between July 2000 and June 2001. Seismological observations are compared with modeling results to isolate robust activity features of relevant source processes. First, we use observations of microseism source locations estimated by LandĂšs et al. (2010) based on array processing of ambient noise correlations. Second, we construct synthetic activity patterns by coupling sea state estimates derived from wave action models to the excitation theory for microseisms. The overall spatiotemporal evolution of both estimates is characterized by a seasonal character that is associated with strong activity during winter months. The distribution of landmass causes seasonal changes on the Northern Hemisphere (NH) to exceed the variability on the Southern Hemisphere (SH). Our systematic comparison of the two estimates reveals significant microseism excitation along coastlines and in the open ocean. Since coastal reflections are not accounted for in the modeling approach, the consistent mismatch between near-coastal observations and predictions suggests that relevant microseism energy arriving at the networks is generated in these areas. Simultaneously, systematic coincidence away from coastlines verifies the open ocean generation hypothesis. These conclusions are universal and robust with respect to the seismic network locations on the NH. The spatially homogeneous resolution of our synthetics provides a valuable resource for the assessment of the global microseism weather. Similar to previously identified hot spot areas in the North Atlantic, the modeled distributions hypothesize regions of strong localized activity on the SH, which are only partially confirmed by the analyzed data sets

    Azimuthal Anisotropy at Valhall: the Helmholtz Equation Approach

    Get PDF
    International audienceWe used 6 hours of continuous vertical records from 2320 sensors of the Valhall Life of Fields Seismic network to compute 2 690 040 cross-correlation functions between the full set of sensor pair combinations. We applied the 'Helmholtz tomography' approach combined with the ambient noise correlation method to track the wave front across the network with every station considered as a virtual source. The gradient of the interpolated phase travel time gives us an estimate of the local phase speed and of the direction of wave propagation. By combining the individual measurements for every station, we estimated the distribution of Scholte's wave phase speeds with respect to azimuth. The observed cosine pattern indicates the presence of azimuthal anisotropy. The elliptic shape of the fast anisotropy direction is consistent with results of previous shear wave splitting studies and reflects the strong seafloor subsidence due to the hydrocarbon reservoir depletion at depth and is in good agreement with geomechanical modeling

    Temporal variations of non-volcanic tremor (NVT) locations in the Mexican subduction zone: Finding the NVT sweet spot.

    Get PDF
    International audienceEpicentral locations of non-volcanic tremors (NVT) in the Mexican subduction zone are determined from the peak of the energy spatial distribution and examined over time. NVT is found to occur persistently at a distance of ∌215 km from the trench, which we term the "Sweet Spot" because this region probably has the proper conditions (i.e., temperature, pressure, and fluid content) for the NVT to occur with minimum shear slip. High-energy NVT episodes are also observed every few months, extending ∌190 km to ∌220 km from the trench with durations of a few weeks. During the 2006 slow slip event (SSE) the duration and the recurrence rate of the NVT episodes increased. Low-energy episodes were also observed, independent from the high-energy episodes, ∌150 km to ∌190 km from the trench during the 2006 SSE. Both the high and low energy episodes were made up of many individual NVT's that had a range of energy-release-rates. However, the highest energy-release-rates of the high-energy episodes were consistently double those of the low-energy episodes and the persistent activity at the Sweet Spot. We suggest that all of the high-energy episodes are evidence of small, short repeat interval SSE. Given this model, the increased recurrence rate of the high-energy NVT episodes during the 2006 long-term SSE implies that short-term SSE's also increase during the SSE and are therefore triggered by the SSE

    Introduction to Arithmetic Mirror Symmetry

    Full text link
    We describe how to find period integrals and Picard-Fuchs differential equations for certain one-parameter families of Calabi-Yau manifolds. These families can be seen as varieties over a finite field, in which case we show in an explicit example that the number of points of a generic element can be given in terms of p-adic period integrals. We also discuss several approaches to finding zeta functions of mirror manifolds and their factorizations. These notes are based on lectures given at the Fields Institute during the thematic program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics

    Compact radio cores: from the first black holes to the last

    Full text link
    One of the clearest signs of black hole activity is the presence of a compact radio core in the nuclei of galaxies. With the Square Kilometer Array (SKA) these cores can be used to study the evolution of black holes throughout the universe and even to detect the very first generation of supermassive black holes. We start by introducing some of the basic properties of compact radio cores and how they scale with accretion power. The relative contribution of jets and radio cores to the Spectral Energy Distribution (SED) is strongest in sub-Eddington black holes but also present in the most luminous objects. Radio and X-rays are correlated as a function of black hole mass such that the most massive black holes are most suited for radio detections. We present a radio core luminosity function for the present universe down to the least luminous AGN. The SKA will essentially detect all dormant black holes in the local universe, such as that in our Milky Way, out to several tens of Megaparsecs. It will also be able to see black holes in the making at redshifts z>10 for black hole masses larger than 10^7 M_sun. Finally, we suggest that the first generation of black holes may have jets that are frustrated in their dense environment and thus appear as Gigahertz-Peaked-Spectrum (GPS) sources. Since their intrinsic size and peak frequency are related and angular size and frequency scale differently with redshift, there is a unique region in parameter space that should be occupied by emerging black holes in the epoch of reionization. This can be well probed by radio-only methods with the SKA. (abridged)Comment: latex, 16 pages, 11 figures, to appear in: "Science with the Square Kilometer Array," eds. C. Carilli and S. Rawlings, New Astronomy Reviews, (Elsevier: Amsterdam

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (∌109−10.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe

    Tidal Dwarf Galaxies at Intermediate Redshifts

    Full text link
    We present the first attempt at measuring the production rate of tidal dwarf galaxies (TDGs) and estimating their contribution to the overall dwarf population. Using HST/ACS deep imaging data from GOODS and GEMS surveys in conjunction with photometric redshifts from COMBO-17 survey, we performed a morphological analysis for a sample of merging/interacting galaxies in the Extended Chandra Deep Field South and identified tidal dwarf candidates in the rest-frame optical bands. We estimated a production rate about 1.4 {\times} 10^{-5} per Gyr per comoving volume for long-lived TDGs with stellar mass 3 {\times} 10^{8-9} solar mass at 0.5<z<1.1. Together with galaxy merger rates and TDG survival rate from the literature, our results suggest that only a marginal fraction (less than 10%) of dwarf galaxies in the local universe could be tidally-originated. TDGs in our sample are on average bluer than their host galaxies in the optical. Stellar population modelling of optical to near-infrared spectral energy distributions (SEDs) for two TDGs favors a burst component with age 400/200 Myr and stellar mass 40%/26% of the total, indicating that a young stellar population newly formed in TDGs. This is consistent with the episodic star formation histories found for nearby TDGs.Comment: 9 pages, 5 figures, Accepted for publication in Astrophysics & Space Scienc
    • 

    corecore