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émanant des établissements d’enseignement et de
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SUMMARY

Temporal variations in the elastic behavior of the Earth’s crust can be monitored through the

analysis of the Earth’s seismic response and its evolution with time. This kind of analysis is par-

ticularly interesting when combined with the reconstruction of seismic Green’s functions from

the cross-correlation of ambient seismic noise, which circumvents the limitations imposed by

a dependence on the occurrence of seismic events. In fact, because seismic noise is recorded

continuously and does not depend on earthquake sources, these cross-correlation functions can

be considered analogously to records from continuously repeating doublet sources placed at

each station, and can be used to extract observations of variations in seismic velocities. These

variations, however, are typically very small: of the orderof 0.1%. Such accuracy can be only

achieved through the analysis of the full reconstructed waveforms, including later scattered

arrivals. We focus on the method known as Moving-Window Cross-Spectral analysis that has

the advantage of operating in the frequency domain, where the bandwidth of coherent signal in

the correlation function can be clearly defined. We investigate the sensitivity of this method by

applying it to microseismic noise cross-correlations which have been perturbed by small syn-

thetic velocity variations and which have been randomly contaminated. We propose threshold

signal to noise ratios above which these perturbations can be reliably observed. Such values
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are a proxy for cross-correlation convergence, and so can beused as a guideline when deter-

mining the length of microseismic noise records that are required before they can be used for

monitoring with the moving-window cross-spectral technique.

Key words: microseismic noise – cross-correlation – seismic monitoring.

1 INTRODUCTION

Stress field variations in time modify the elastic behavior of the Earth’s crust, hence they can be

recovered through the analysis of the Earth’s seismic response and its temporal evolution. This

is particularly true when earthquake codas, microtremors or microseismic noise are considered,

as these are very sensitive to the effects of the often small perturbations in the Earth’s elastic

properties as they sample it both randomly and repeatedly (Aki 1957; Sato & Fehler 1998). Much

effort has been devoted to the study of waveform variations in space and time for the purpose

of understanding the dynamic behaviour of the crust. Of particular interest are tectonically and

volcanically active regions in which stress changes are frequent and may precede earthquakes and

volcanic eruptions. Initially, almost all studies focusedon the spatio-temporal behavior of coda

waves, where the observation of variations in their amplitude found a possible application in the

forecasting of volcanic activity (Aki & Ferrazzini 2000). The inclusion of phase information to the

analysis (Poupinet et al. 1984) gave rise to a new approach which led to the detection of relative

variations in seismic velocity between earthquake doublets and multiplets. In the same way, the

seismic coda wave interferometry technique developed by Snieder et al. (2002) has confirmed the

existence of detectable precursory crustal changes (Grêtet al. 2005; Wegler et al. 2006), but is

only practicable in cases where records of highly similar earthquake doublets are available.

More recently, seismic noise has become an increasingly popular and promising area of study,

as it circumvents the limitations imposed by a dependence onthe occurrence of seismic events.

This is due to the possibility of retrieving seismic Green’sfunctions from the cross-correlation

of records of a random seismic wave field taken at various locations within a region of interest

⋆
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(Weaver & Lobkis 2001; Lobkis & Weaver 2001; Campillo & Paul 2003; Shapiro & Campillo

2004; Shapiro et al. 2005; Sabra et al. 2005). Indeed, the useof ambient noise cross-correlations

for monitoring has been shown to be robust even when conditions prevent the full reconstruction

of the seismic Green’s function (C. Hadziioannou et al. 2009; Weaver et al. 2009).

Because seismic noise is recorded continuously and does notdepend on earthquake sources,

these cross-correlation (cc) functions can be considered analogously to records from continuously

repeating doublet sources placed at each station, and can besimilarly used to extract observations

of variations in seismic velocities.

The main idea for monitoring the evolution of seismic velocities over time using seismic noise

is to compare “current” cross-correlation functions that represent the situation at a given time pe-

riod to “reference” functions that represent an average background state of the studied media. We

can distinguish between two different approaches that are used for the extraction of seismic veloc-

ity variations from cross-correlations and operate in the time and frequency domains, respectively.

The first method, known as Coda Wave Interferometry, was described by Snieder (2006), and later

evolved to Passive Image Interferometry (Sens-Schönfelder & Wegler 2006; Wegler et al. 2009) for

noise sequence cross-correlations. The second method has been named Moving-Window Cross-

Spectral Analysis (MWCS) by Ratdomopurbo & Poupinet (1995)and is the focus of the present

study. In fact, although approaches in both the time and frequency domains have found interest-

ing applications showing similar sensitivities (Wegler etal. 2009), the MWCS technique has the

advantage of operating in the frequency domain, where the bandwidth of coherent signal in the

correlation function can be clearly defined.

The main goal of this paper is to assess the accuracy of the velocity variations measured from

noise cross-correlations with the MWCS technique and, in particular, how this accuracy depends

on the quality (i.e., signal to noise ratio, SNR) of the reconstructedcc functions. We start by briefly

introducing the main concepts of the MWCS method with most ofthe technical details described in

Appendix A. Then, we use a set of noise cross-correlations computed from records of the seismic

stations of the Piton de la Fournaise volcano (La Réunion) monitoring network shown in Figure 1.

First, we study the convergence of thesecc functions and their fluctuations in the time and
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Figure 1. Map of stations (named black squares) used in this study.inset:La Réunion island. The black box
outlines the part of Piton de la Fournaise shown in the main panel.

frequency domains. Then, we construct a set of synthetic reference and currentcc functions by

stretching the observedcc functions to mimic velocity variations within the media andby adding

random noise with spectral properties similar to observed random variations. We apply the MWCS

measure to these syntheticcc functions and compare the inferred velocity variations with known

a-priori introduced values. We finally propose threshold values of SNR above which small velocity

variations can be reliably retrieved and subsequently interpreted.



MWCS: assessment of resolution and accuracy5

2 MOVING-WINDOW CROSS-SPECTRAL ANALYSIS

The Moving-Window Cross-Spectral technique was first introduced by Poupinet et al. (1984) for

the retrieval of relative velocity variations between earthquake doublets. More recently, Brenguier

et al. (2008a,b) exploited this technique by applying it to seismic noise records, taking advantage

of the possibility of treating noise cross-correlations inanalogy with doublets. Here we describe

only the general purpose of the technique, leaving all computational details to Appendices A and

C.

This analysis is applied to time series which are computed bycross-correlating the noise se-

quences recorded at two different seismic stations, for allpossible station pairs. The preliminary

step for the analysis is to build up at least one reference andseveral current cross-correlations.

Since, for computational purposes, the continuous noise records are cut into short sequences (for

example, one for each day or hour), it is necessary to stack a certain number of singlecc’s. In this

framework, the reference and current functions are defined by the number of summedcc’s: Nref

andNcur, respectively. The only requirement is thatNref >> Ncur to ensure the referencecc is

representative of a background value, while the currentcc contains information on the actual state

of the crust.

For any couple of reference,ccref , and current,cccur, functions, the technique combines two

steps. The first step consists in the computation of the time-delay between the two signals within a

series of overlapping windows. The second step is the evaluation of the relative velocity variation

associated to the current function with respect to the reference. In this second step, it is assumed,

for simplicity, that the seismic wave propagation velocityis perturbed homogeneously within the

studied media.

It is important to note that the first operation is executed inthe spectral domain, through the

study of the phase of the cross-spectrum, allowing for precise selection of the frequency band on

the basis of the coherency between the two windowedcc’s (see Appendix A1). Each computed

delay-time corresponds to a cross-correlation lag-time, which is taken as the central point of the

window. Therefore, the second step involves the evaluationof the trend,δt/t, of the delay-time

estimates over the whole length of the signals (see Figure A1). The slope of their linear regression
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indicates, to a first approximation, the relative homogeneous velocity perturbation of the current

cc with respect to the referencecc.

Critical points in the MWCS analysis are the choices ofNref , Ncur, the length and overlap of

each window and the total number of windows which are used. These are all required for the first

step. The choice of these parameters will depend on the characteristics of thecc functions such

as their length, frequency content and how fast the signal decays below the noise level. The aim

of our work is to test the reliance of both the resolution and accuracy of the measurements on the

quality of thecc functions, which can be quantified in terms of their signal tonoise ratio.

3 RANDOM FLUCTUATIONS AND CONVERGENCE OF OBSERVED NOISE

CROSS-CORRELATIONS

Measuring the signal to noise ratio (SNR) of a stacked set of cross-correlation functions is needed

to distinguish between stacks from which reliable delay-times can be measured, and those from

which they cannot. Furthermore, the simulated SNR of the cross-correlations we use in our tests

must be compatible with this measure. We employ the method described by Larose et al. (2007),

which is summarized below.

First, to estimate the level of noise,σ(N, t), in a stack, we measure the variation between each

constituent cross-correlation function,cc(t), at each lag-time,t, as follows

σ(N, t) =

√

〈cc(t)2〉 − 〈cc(t)〉2
N − 1

(1)

Here,〈·〉 denotes the average overN single functions. We then measure the level of signal,

s(N, t), in the stacked cross-correlation by taking its Hilbert envelope

s(N, t) = |〈cc(t)〉 + iH(〈cc(t)〉)| (2)

whereH(·) denotes the Hilbert transform of the stacked function〈cc(t)〉 andi is the imaginary

unit. After we smooths(N, t) andσ(N, t) with a ten-second-wide sliding cosine window, the SNR

of the stacked cross-correlation function can be estimated

SNR(N, t) =
s(N, t)

σ(N, t)
(3)
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Figure 2 demonstrates the measurement of SNR using this method. The plotted cross-correlations

are from stations DSR and TCR near the summit of Piton de la Fournaise volcano, La Réunion

(Figure 1), during the thirty days preceding an eruption on its northern flank (Peltier 2007). Neither

the variation between the daily functions nor the estimatedsignal are constant witht. The resulting

signal to noise ratio, however, is less variable. For the purpose of our tests, we simulate a signal to

noise ratio which is constant for allt when we add noise to our cross-correlation functions.

Figure 3 shows how the SNR of a cross-correlation stack depends onN . Here, we stack various

numbers of consecutive daily cross-correlations from stations DSR and TCR. Days of missing

data and of eruptive activity are skipped, and the plotted values ofN are the number of remaining

days. This plot shows that SNR grows at a rate which is just less than proportional to
√

N . While

SNR appears to increase monotonically withN , it may in many instances be affected by drastic

changes in the geology of the region under investigation. Inthis example, we avoid the collapse of

Dolomieu crater at the start of 2007 on the summit of Piton de la Fournaise volcano by only using

cross-correlations between the years 1999 and 2006.

Figure 4 shows the relationship between the error estimatedby the MWCS technique (eb de-

fined by Equation A.12 in Appendix A2) and the SNR calculated above. Here, current- and ref-

erence functions are formed by grouping daily cross-correlations from stations DSR–TCR into

30-day and 300-day stacks, respectively. For each current and reference function pair between the

years 1999 and 2006, we measure delay-times within 6 second-wide lag-time windows. We then

attribute the mean current function SNR within each window to its corresponding delay-timeδt.

Finally, we calculateδt/t along with its accompanying error as explained in Appendix A. This

error, expressed relative toδt/t, is plotted against the mean of the attributed SNR values. For each

of the plotted ranges of|δt/t|, these errors appear to be anti-correlated with SNR. Figure5 summa-

rizes these observations for station pairs DSR–TCR and BOR–SFR. These plots show a consistent

inverse proportionality between the errors and the calculated SNR values, verifying that this mea-

sure of SNR may be eventually used to assess the quality of theδt/t measurement obtained from

noise correlations.



8

c
ro

s
s
−
c
o
rr

e
la

ti
o
n

stations DSR and TCR, 12−Feb−2000

−60 −40 −20 0 20 40 60
−0.2

−0.1

0

0.1

0.2

n
o
is

e

−60 −40 −20 0 20 40 60
0

2

4

6

8
x 10

−3

s
ig

n
a
l 
to

 n
o
is

e
 r
a
ti
o

lag−time (s)
−60 −40 −20 0 20 40 60
0

5

10

single−day cross−correlations

stack (30 days)

signal envelope

a

b

c
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Figure 5. Lines of best fit determined from relativeδt/t error estimates for (a) stations DSR–TCR and (b)
BOR–SFR. One line is plotted for each value of|δt/t| (see legend).
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4 SYNTHETIC CROSS-CORRELATION FUNCTIONS

To test the sensitivity of the MWCS technique, we construct asynthetic data set as follows: first, we

take a reference function from real cross-correlations of seismic noise, then stretch it to simulate a

series of homogeneous seismic velocity changes. This stretch is achieved by resampling the cross-

correlations with a Fourier-transform based interpolation. Effectively, this involves zero-padding

the cross-correlation in the Fourier-domain, then taking the inverse transform. When the original

sampling interval is applied, the interpolated cross-correlation becomes a stretched version of the

original. We then add random noise to each stretched cross-correlation function to simulate a

set of possible signal to noise ratios. Finally, treating the original function as the reference, and

each stretched, noise-added function as the current function, we attempt to recover the applied

stretch using the MWCS method and to see how the resulting errors depend on the level of the

added noise. For these tests it is important to use syntheticnoise with properties close to the real

random fluctuations of the observedcc functions. Therefore, we first characterize the spectra of

these observed fluctuations and then propose a procedure to simulate a random noise series with

defined spectral properties.

4.1 Spectrum of the observed random fluctuations

A simple way to view a pair of stacked current and reference cross-correlation functions is to

treat the current function,cccur(t), as a contaminated version of the relatively noiseless reference

function,ccref(t).

cccur(t) = ccref(t) + n(t) (4)

To observe one realization of the impinging noise,n(t), we simply subtract the current function

from the reference function.

Figure 6 shows an example of a current and a reference function computed for stations DSR

and TCR on Piton de la Fournaise volcano, La Réunion. The reference function is a stack of

the 300 days preceding an eruption on the volcano’s south-eastern flank (Peltier 2007), while the

current function is a stack of the last thirty of those days. Although the level of the noise appears



MWCS: assessment of resolution and accuracy13

−60 −40 −20 0 20 40 60
−0.1

−0.05

0

0.05

0.1

lag−time (s)

c
ro

s
s
−
c
o
rr

e
la

ti
o
n

stations DSR and TCR, 11−Oct−2000

−60 −40 −20 0 20 40 60
−0.01

−0.005

0

0.005

0.01

lag−time (s)

d
if
fe

re
n
c
e

10
−1

10
0

0

2

4

6

8
x 10

−4

a
m

p
lit

u
d
e

frequency (Hz)
10

−1
10

0
0

0.2

0.4

0.6

0.8

1
x 10

−3

a
m

p
lit

u
d
e

frequency (Hz)

reference

current
a

b

c d

Figure 6. Observation of noise in real cross-correlation stacks.a: A 300-day reference stack (dashed curve)
and its associated 30-day current stack (solid curve).b: The difference between the reference and current
stack is taken as an observation of noise. Small lag-times are omitted from the calculation as they are not
used for delay-time estimation.c andd: Amplitude spectra of the negative-lag and positive-lag segments,
respectively, of the observed noise (solid curves) and the reference stack (dashed curves).

to be relatively low compared to that of the reference function, examination of its spectrum reveals

that the amplitude of the noise is at least comparable to thatof the reference function at certain

frequencies.

For every station pair, we calculaten(t) for all available current and reference function pairs

between the years 1999 and 2006. Then, by averaging their squared-amplitude spectra, we ob-
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serve a typical noise spectrum which we can use to contaminate our synthetically stretched cross-

correlation functions (e.g., Figure 6c and 6d).

4.2 Simulating random noise with pre-defined spectra

To contaminate our synthetic cross-correlation functions, we randomly perturb each value by an

amount drawn from a Gaussian distribution. The standard deviation of this distribution is chosen

as follows

σsynth(t) =
s(t)

SNR(t)
(5)

wheres(t) is the signal envelope of the synthetic function, andSNR(t) is the desired signal to

noise ratio. We discuss whether or not the use of a Gaussian distribution to simulate noise in this

way is appropriate for our cross-correlations in Appendix D.

To ensure that the noise exists in the appropriate frequencyband, we apply the method de-

scribed by Percival (1993) to produce a random time-series which shares the same spectrum as

that observed in real data. After normalizing to unit standard deviation, we scale the resulting

noise byσsynth(t), then add it to our synthetic cross-correlation function.

Figure 7 demonstrates how noise is prepared in this way. The original function is a stack

of all available daily cross-correlations computed between stations DSR and TCR in the year

2002. Noise is generated using the spectrum which is observed for this station pair, then scaled to

produce a constant signal to noise ratio. This noise targetsthe frequency range in which real noise

is observed and in which delay-times are to be later measured.
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Figure 7. Addition of random noise to a synthetic cross-correlation function from stations DSR and TCR.
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simulates that of the noise which is observed for the stationpair. This noise is scaled in time (e andf), then
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5 RESULTS OF SYNTHETIC TESTS

For every station pair, we simulate 1000 random synthetic realizations of currentcc functions with

predefined stretching coefficients mimicking velocity perturbations and predefined signal to noise

ratios. Then, we analyze the resulting set ofδt/t (stretch) estimates and their accompanying errors.
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Figure 8. Histograms for two sets of stretch estimates.a: The applied stretch is 0.05 % and the simulated
SNR is 3.b: The applied stretch is unchanged, but the simulated SNR is increased to 8. The reference
cross-correlation is from stations DSR and TCR.

We show results of sensitivity tests for vertical-component records from two pairs of stations

on Piton de la Fournaise volcano, La Réunion. For each station pair (BOR–SFR, and DSR–TCR),

we stack every available daily cross-correlation functionbetween the years 1999 and 2006 to

construct our reference function, then filter between 0.1 and 1.0 Hz.

To construct current functions, we stretch these referencecross-correlations by a range of

values,S = {0.01%, 0.02%, ... , 0.10%}, then add noise to simulate signal to noise ratios of

SNR = {1, 2, ... , 10}. Finally, we use six-second-wide lag-time windows which overlap by

three seconds to compute delay-times (See Appendix A).

For each pair of simulated stretch and SNR values(S, SNR), we obtain 1000 stretch estimates,

Si, i ∈ [1, 1000], and their associated least-squares errors,ei (standard deviations) from the MWCS

technique. Figure 8 shows the distribution of these estimates for two different values of SNR. In

both cases, these estimates form an approximately bell-shaped distribution centered around the

true stretch of 0.05%. In the case of low SNR, these estimatesform a wide distribution (Figure

8a) due to the high level of noise in the cross-correlations,and we cannot confidently recoverδt/t.

When SNR is increased (Figure 8b), the distribution narrows, andδt/t is better resolved.

To quantitatively assess the level of systematic error in each set of estimates, we calculate their

relative bias as follows



MWCS: assessment of resolution and accuracy17

Figure 9.Relative bias calculated for each(S, SNR) pair using Equation 6. Cross-correlation functions are
taken from (a) stations DSR–TCR and (b) stations BOR–SFR. Light colours indicate a small relativebias.

b(S, SNR) =
〈Si〉 − S

S
(6)

Figure 9 shows this measure for stations DSR–TCR (Figure 9a)and BOR–SFR (Figure 9b). For

both station pairs, the relative bias is never more than a fewpercent, provided the simulated stretch

and SNR are large enough (say, above 0.02% and 3, respectively). This suggests the MWCS

method introduces very little systematic error.

To assess the total relative error over the 1000 trials for each (S, SNR) pair, we calculate their

misfit from the true stretch as follows

etotal(S, SNR) =
1

S
×

√

∑

(Si − S)2

1000 − 1
(7)

This incorporates both the systematic and the random error in each set of 1000Si estimates. Figure

10 shows these measures for the two station pairs described above. Here, colors indicate the level

of error, expressed as a percentage of the true stretch. As expected, this error decreases as either

the applied stretch or the simulated SNR are increased.

We compare this error,etotal, evaluated from the synthetic test with errors evaluated from

the least-squares fit during the MWCS analysis (Appendix A2). For every synthetic currentcc

function, we evaluate the least-squares error and then compute its mean value for a given pair of

stretching coefficient and SNR〈ei〉(S, SNR). Figure 11 shows the ratio of errors estimated from



18

Figure 10.Total errors calculated for each pair using equation 7. Cross-correlation functions are taken from
(a) stations DSR–TCR and (b) stations BOR–SFR. Cold colours indicate(S, SNR) values for whichδt/t
is well resolved using the MWCS technique.

the synthetic test and from the MWCS least-squares fit for station pairs DSR–TCR and BOR–SFR.

For both station pairs, the least-squares error underestimates the total variability of the targeted

velocity variations by a factor of around six for most valuesof SNR and for all applied stretching

coefficients (Figure 11). We address the cause of this discrepancy in Appendix B.

Finally, we plotetotal against SNR (Figure 12) to see if the estimates we obtain during our tests

exhibit the inverse relationship between cross-correlation quality andδt/t error that we see for real

Figure 11. Ratio between the total error and the error estimated from the MWCS least-squares fit as a
function ofSNR. Cross-correlation functions are taken from (a) stations DSR–TCR and (b) stations BOR–
SFR. One line is plotted for each simulated stretch (see legend).
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Figure 12.Total error plotted as a function of SNR. Cross-correlationfunctions are taken from (a) stations
DSR–TCR and (b) stations BOR–SFR. One line is plotted for each simulated stretch (see legend in Figure
11) along with its estimated slope (dashed lines).

data (Figures 4 and 5). When viewed on a log-log scale, these results exhibit a clear anticorrelation.

Reassuringly, the similarity between this plot and Figures4 and 5 demonstrates the consistency

between the SNR we simulate and the SNR we measure from real data.

6 DISCUSSION AND CONCLUSIONS

To assess the accuracy of the velocity variations measured from noise cross-correlations (CC) with

the MWCS technique we constructed a set of synthetic CC functions corresponding to known

media velocity variations (stretching coefficients) and perturbed by random noise with statistical

properties similar to those observed at the stations of the Piton de la Fournaise seismic network.

Our analysis resulted in simple relations between the accuracy of the recovered velocity variations

and the Signal-to-Noise Ratio (SNR) of the analyzed CC functions (Figure 10). In turn the SNR

is on average simply related to the duration of the noise record from which the CC function was

computed (Figure 3). These results provide us with a simple guidance on how to choose an optimal

stack duration to recover a desired level of media velocity variations. In particular, for the case of

the seismic stations on Piton de Fournaise volcano, our analysis indicated that recovering a relative

velocity perturbation of0.1% from a single pair of stations requires an SNR of∼ 5 that can be

obtained by stacking a few tens of days of noise correlations. This implies in particular that the
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accuracy of measurements presented by Brenguier et al. (2008b) by averaging measurements from

many station pairs could be barely achieved from analyzing asingle pair of stations.

Another important result of our analysis performed with synthetic CC functions is that the

formal error computed from the linear regression within theMWCS technique does not match the

true uncertainty of the recovered relative delay-times. Inthe case of our tests, the true error appears

to be around six times greater than that which is estimated. This mismatch is mainly due to the

fact that the least-squares error is not uniquely defined, but depends on the parameters used in the

the application of the MWCS technique (See Appendix B). For aparticular choice of parameters,

this error may underestimate the real uncertainty of the recovered velocity variations. A further

explanation is that the MWCS technique effectively uses only one realization of the CC function

with a relatively short duration (because of the fast decay of the coda part of the recovered Green’s

functions). This single and short realization is not representative of the full variability of the CC

functions. The sampling can be improved by using multiple pairs of stations simultaneously as has

been done by Brenguier et al. (2008a,b). Nonetheless, the factor relating the MWCS error with

the total error is roughly independent of both SNR and the media velocity variation. Furthermore,

we observe the same factor (Figure 11) for both pairs of stations considered in our study, BOR–

SFR and DSR–TCR. This means that, in the case of Piton de la Fournaise seismic noise cross-

correlations, and for this particular choice of parameters, we can apply a correction to the MWCS

errors by simply multiplying their values by a factor of∼ 6.

A main conclusion from our study is that before systematically applying noise-based MWCS

monitoring of temporal media changes in a particular setting, it is important to investigate the sta-

tistical properties of the seismic noise and the convergence of noise correlations. This analysis is

necessary to establish the correction factor for the MWCS errors and also the optimal durations of

correlated time series. So far, our results indicate that recovering relatively weak velocity changes

associated with moderate volcanic activity (Brenguier et al. 2008b), intermediate-size earthquakes

(Brenguier et al. 2008a) or with seasonal variations (Meieret al. 2010) requires stacking correla-

tions from a few tens of days and averaging measurements frommany pairs of stations. Further

improvement of temporal and spatial resolution of the MWCS measurements could be eventually
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achieved by applying additional steps in the data processing such as data adaptive filtering (Baig

et al. 2010).
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APPENDIX A: MWCS

In the following section, the method of Moving-Window Cross-Spectral analysis (MWCS) is de-

scribed in the context of stacked reference and current cross-correlation functions.

A1 Time-delay computation

The first step in the MWCS analysis is the calculation of delay-times,δt, between the two cross-

correlation functions within a series of overlapping lag-time windows.

Each cross-correlation function is divided intoNw windows, one for each delay-time mea-

surement. The choice of window length, overlap, andNw will generally depend on the frequency

content and the SNR of the cross-correlation functions under consideration. The windowed seg-

ments are mean-adjusted and cosine-tapered before being Fourier-transformed into the spectral

domain.

In Figure A1 (a), an example of a windowed pair of cross-correlation functions is shown. The

cross-spectrum,X(ν), between the two windowed time-series is calculated as follows

X(ν) = Fref(ν) · F ∗

cur(ν) (A.1)

whereFref(ν) andFcur(ν) are Fourier-transformed representations of the windowed time-series,

ν is frequency in Hz and the asterisk denotes complex conjugation. For our purposes, it is more

useful to represent the complex cross-spectrum by its amplitude|X(ν)| and phaseφ(ν)

X(ν) = |X(ν)| eiφ(ν) (A.2)

One requirement of cross-spectral time-delay estimation is that, aside from being shifted in

time, the two windowed time-series are similar. Such similarity is quantitatively assessed using

the cross-coherenceC(ν) between their energy densities:
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C(ν) =

∣

∣

∣
X(ν)

∣

∣

∣

√

|Fref(ν)|2 · |Fcur(ν)|2
(A.3)

Here, the overlines indicate smoothing, which in our case isobtained by applying a sliding

raised-cosine function with a half-width of 0.1 Hz to the energy density spectra of the two Fourier-

transformed time-series and to the real and imaginary partsof the complex-valued cross-spectrum.

The cross-coherence ranges between zero and one, with maximum values approached at those

frequencies where the two spectral densities are highly similar.

The time-delay between the two cross-correlations can be found in the (unwrapped) phase,

φ(ν), of the cross-spectrum, which will be linearly proportional to frequency.

φj = m · νj, m = 2πδt (A.4)

The time shift,δti (subscripti for theith window), between the two signals is estimated from

the slopem of a linear regression of the samples,j = l, ..., h, within the frequency range of

interest (see Figure A2, panelc). During the regression, a weightwj, which depends on the cross-

coherence at each sampled frequency, is assigned to each cross-phase value.

wj =

√

C2
j

1 − C2
j

·
√

|Xj| (A.5)

Unlike Poupinet et al. (1984), these weights incorporate both the cross-spectral amplitude

and the cross-coherence. This generates more differentiated weights in cases where the cross-

coherence is relatively constant but the cross-spectral energy is variable. Figure A2, panelb shows

such an example. This choice of weighting is described in more detail in Appendix C.

Using a weighted least-squares inversion, the slopem is estimated as

m =

h
∑

j=l

wjνjφj

h
∑

j=l

wjν
2
j

(A.6)

The associated error,em, is calculated using the rule of propagation of errors

em =

√

√

√

√

∑

j

(

wjνj
∑

i wiν2
i

)2

σ2
φ (A.7)

whereσ2
φ is the squared misfit of the data to the modeled slope and is calculated as
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Figure A1. a: A pair of a real reference (from Piton de la Fournaise) and a synthetic current cross-
correlation, along the time interval between -30 and 30 s. The current function is generated by stretching the
reference by 0.1%. The black rectangle delimits one of the windows used in the analysis (6s long, sliding
3s).b: The second step in the MWCS analysis: a linear regression through weighted least-squares over the
time delays that have been computed during the first step. Each time-delay is associated with the mean time
in its sliding window. The straight red line is the fitted slope and the dotted lines highlight the error margins.

σ2
φ =

∑

j(φj − mνj)
2

N − 1
(A.8)

Following Equation A.4, the time delay,δt, and its error,eδt, between the two signals are taken

by simply dividingm andem, respectively, by2π.

Repeating this process for all windows, we obtainNw delay-time estimates between the two

cross-correlation functions, each corresponding to the central time,ti (i = 1, ..., Nw), of the win-

dow in which it was measured.

It is important to keep in mind that, for a given frequency range,eδt is inversely proportional

to the square-root of the number of values that are used in theinversion. This means that if the

windowed cross-correlations are zero-padded prior to Fourier transformation, the error estimate

will be artificially reduced. Multiplyingeδt by
√

Nfft, whereNfft is the number of points in the

Fourier-transformed time series, removes this dependence.
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A2 Velocity variation results

To a first order approximation, we can consider a stress field perturbation which acts homoge-

neously over the region sampled by the cross-correlated seismic noise. Under this assumption,

the resulting seismic velocity perturbationδv/v within that region will also be homogeneous, and

be manifest as a stretching−δt/t of the current cross-correlation function relative to the refer-

ence function. This stretching is constant overt, and is numerically the opposite of the velocity

perturbation (Poupinet et al. 1984).

δt

t
= −δv

v
(A.9)

Consequently, to recoverδv/v, we apply a linear regression to theNw delay-time measure-

ments (Figure A1).

δti = a + bti , i = 1 . . .Nw (A.10)

where the coefficienta represents a possible instrumental drift (Stehly et al. 2007), andb cor-

responds to the relative time variationδt/t. Again, we can estimate these two parameters through

a weighted least-squares inversion. Here, the weights,pi, are determined using the estimated error

of each time-delay measurement:pi = 1/e2
δti

. The resulting estimate forb = −δv/v is then

b =

∑

pi(ti − 〈t〉)δti
∑

pi(ti − 〈t〉)2
(A.11)

with variance

e2
b =

1
∑

pi(ti − 〈t〉)2
(A.12)

while the intercepta is

a = 〈δt〉 − b〈t〉 (A.13)

with variance

e2
a =

〈t2〉
∑

pi(ti − 〈t〉)2
(A.14)

where〈t〉 =
∑

piti/
∑

pi, 〈δt〉 =
∑

piδti/
∑

pi and〈δt2〉 =
∑

piδt
2
i /

∑

pi are weighted means

of t, δt andt2, respectively.
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Figure A2. Example of how a delay-time is measured between two windowedcross-correlations.a: zoom-
in of the two cross-correlations within a single lag-time window (black rectangle in Figure A1, panel a).b:
Coherency calculated for the two windowed signals at all frequencies.c: Linear regression for the phase
displacement along the frequencies of interest (0.2 to 0.9 Hz), which have been marked with red asterisks
and errorbars (1/w2

j ).

An important feature of this formulation is that, for a givencorrelation-time interval, the error

of the relative velocity variation,eb, is inversely proportional to the square-root of the number

of delay-times that are used in the regression. Consequently, if the number of sliding windows

Nw is increased by reducing the time-step between consecutivewindows, then the error will be

artificially reduced. This is similar to the dependence of each delay time erroreδt (Equation A.7)

on the number of points used in the Fourier transform of the windowed data. Multiplying the

estimated error byNw is one way to remove this dependence.

APPENDIX B: DEPENDENCE OF ERRORS ON MWCS PARAMETERS

In Section 5, we observe a discrepancy (Figure 11) between the total errors we obtain from the dis-

tribution of each set of 1000 stretch estimates (etotal, Equation 7) and the estimated least-squares

error defined by Equation A.12. One explanation for this is the dependence of the estimated er-

ror on the number of sliding windows,Nw, into which our cross-correlations are divided (see
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Figure A3. The dependence ofδt/t errors onNfft andNw. Total errors (a, Equation 7) and average least-
squares errors (b, EquationA.12) are plotted as a function of the time-step between six-second-wide sliding
windows. One curve is plotted for each value ofNfft (see legend). Cross-correlation functions are taken
from station pair BOR–SFR. In all cases, the MWCS technique is applied 1000 times to cross-correlations
that have been stretched by 0.05% and have a simulated signalto noise ratio of 5.

Appendix A2). In turn, this value is affected by the delay time errors,eδt (Equation A.7 in Ap-

pendix A1), which themselves are dependent on the number of points,Nfft, used to transform the

windowed cross-correlations into the Fourier domain.

We observe the behaviour of the total error and the estimatederror as these two parameters are

varied. To this end, we alterNw by adjusting the time-step between consecutive six-second-wide

windows, andNfft by zero-padding the windowed cross-correlations prior to Fourier transforma-

tion. Figure A3 shows the total error (Figure A3a) and the average least-squares error (expressed

relative toδt/t, Figure A3b) we obtain when a stretch of 0.05% and a signal to noise ratio of 5

are simulated for station pair BOR–SFR. Each point corresponds to 1000 trials for a given choice

of Nw andNfft. These plots demonstrate the inverse proportionality between the estimated error

and the square-root of bothNw andNfft. Interestingly, the total error also appears to increase

slightly with the time-step, suggesting that a choice of broadly overlapping windows improves the

precision of the relative travel time measurements that areobtained. However, the associated error

estimates must be calibrated in order to accurately evaluate the true precision of these measure-

ments.
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APPENDIX C: TEST ON THE WEIGHTS

In Section A1 we introduce weightswj (Equation A.5) to be associated to eachφj when estimat-

ing time shifts between cross-correlation functions. In this section, we test the influence of these

weights on the results. In order to search for the most suitable formulation ofwj , we compare the

accuracy of the yielded estimates for three different weight definitions:

wj =























































C2

j

1−C2

j

(1)

C2

j

1−C2

j

√

|Xj | (2)

√

C2

j

1−C2

j

√

|Xj| (3)

Using these weights, we apply the MWCS analysis to a reference and a synthetic current function

which has been perturbed from the reference by stretching itto 0.1 %. Starting from this noiseless

current function, we add noise (as described in Section 4.2)to reach final signal to noise ratios

of 10, 5, 2 and 1. The resulting estimates are shown in Figure A4 (a and b, respectively) for the

relative error on time delay computations, and for the relative velocity variation recovered (named

stretch). These measurements are in close agreement with one another, revealing only a slight

dependence on the weights that are used. We choose to usewj(3) as it produces differentiated

weights in cases of near constant coherence, and performs slightly better than the other schemes

in these tests. Furthermore, these findings stress the importance of the noise level on the resolution

of the MWCS technique as the errors shown in Figure A4 are strongly dependent on SNR values.
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Figure A4. a) Relative error of time delay estimations versus SNR for different weights. Each symbol
corresponds to one of the three definitions ofwj. b) Final results of the MWCS analysis in varying the
weights and the SNR level. The symbols match those in panel a), the black horizontal line shows the real
value of stretching between the two CCs.

APPENDIX D: DISTRIBUTION OF OBSERVED FLUCTUATIONS

In Section 4.2 we simulate noisy cross-correlation functions by contaminating them with a random

time-series whose squared amplitude spectrum mimics that of the fluctuations we observe in real

data. This time-series is drawn from a Gaussian distribution with random phase. In this section,

we determine whether such a series is representative of the fluctuations that exist in real cross-

correlations.

As described in Section 4.1 we observe the real fluctuations in our cross-correlations by taking

the difference between corresponding current and reference functions. The cross-correlations we

use in the following examples are from station pair BOR–SFR on Piton de la Fournaise volcano,

and were measured during the period between 1999 and 2006.
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Figure A5. Distribution of the time-domain amplitude (left) and unwrapped phase (right) of the fluctuations
in the current functions measured at stations BOR and SFR. A histogram (top) and a quantile-quantile plot
(bottom) is shown in each case. The plotted values are coloured by thenumber of eruption days contained
in each 30-day current stack. Colours range from blue (no eruption days) to red (30 eruption days ).

We first analyze the distribution of these fluctuations in thetime-domain (Figure A5, left),

then consider their phase distribution (Figure A5, right) after transforming them into the Fourier

domain. In both cases, we plot a histogram (top) and a quantile-quantile plot (bottom) to check

for a Gaussian distribution. In this example, the time-domain distribution at 30 s lag-time, and

the phase distribution at 0.65 Hz are shown. The quantile-quantile plots are made by applying

the inverse normal distribution function (with zero mean and unit standard deviation) to each

ranked set of measurements. The resulting series are plotted (vertical axis) against the ordered

measurements (horizontal axis). As a reference, a line is plotted through the quartiles of the two

series. If the plotted distribution is Gaussian, then the quantile-quantile plot should trace a straight

line. Deviations from the straight line are interpreted as deviations from a Gaussian distribution.

Our tests show that the fluctuations we observe in real cross-correlations deviate slightly from a

simple Gaussian distribution with random phase, mostly during eruptions. Therefore, the analysis

we present in this paper relies on the fluctuations being Gaussian. One way to improve this analy-

sis for co-eruptive periods would be to characterize the true noise distribution and randomly draw

from it when simulating noisy cross-correlations. Nonetheless, the similarity between the mea-

surement errors we observe when applying the MWCS techniqueto real data (Figures 4 and 5)
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and those we obtain in our simulated tests (Figure 12) suggests that the methods we use to create

synthetic noise and evaluate the level of fluctuation in realcross-correlations are adequate for the

purposes of these tests.


