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SUMMARY

Temporal variations in the elastic behavior of the Eartinisstcan be monitored through the
analysis of the Earth’s seismic response and its evolutitntine. This kind of analysis is par-
ticularly interesting when combined with the reconstroictdf seismic Green'’s functions from
the cross-correlation of ambient seismic noise, whichuoireents the limitations imposed by
a dependence on the occurrence of seismic events. In faaybe seismic noise is recorded
continuously and does not depend on earthquake sourcss,dhass-correlation functions can
be considered analogously to records from continuouslgatpg doublet sources placed at
each station, and can be used to extract observations atieas in seismic velocities. These
variations, however, are typically very small: of the ordé0.1%. Such accuracy can be only
achieved through the analysis of the full reconstructedef@ms, including later scattered
arrivals. We focus on the method known as Moving-Window &+8pectral analysis that has
the advantage of operating in the frequency domain, wherbahdwidth of coherent signal in
the correlation function can be clearly defined. We inved&ghe sensitivity of this method by
applying it to microseismic noise cross-correlations whave been perturbed by small syn-
thetic velocity variations and which have been randomlytaonnated. We propose threshold

signal to noise ratios above which these perturbations eael@ably observed. Such values



are a proxy for cross-correlation convergence, and so carsée as a guideline when deter-
mining the length of microseismic noise records that areired before they can be used for

monitoring with the moving-window cross-spectral techugq

Key words: microseismic noise — cross-correlation — seismic momitpri

1 INTRODUCTION

Stress field variations in time modify the elastic behavibthe Earth’s crust, hence they can be
recovered through the analysis of the Earth's seismic respand its temporal evolution. This
is particularly true when earthquake codas, microtremomsigroseismic noise are considered,
as these are very sensitive to the effects of the often sneallifbations in the Earth’s elastic
properties as they sample it both randomly and repeatedyl(®@67; Sato & Fehler 1998). Much
effort has been devoted to the study of waveform variationspace and time for the purpose
of understanding the dynamic behaviour of the crust. Ofi@adr interest are tectonically and
volcanically active regions in which stress changes aguigat and may precede earthquakes and
volcanic eruptions. Initially, almost all studies focusaul the spatio-temporal behavior of coda
waves, where the observation of variations in their amgéttound a possible application in the
forecasting of volcanic activity (Aki & Ferrazzini 2000)h€& inclusion of phase information to the
analysis (Poupinet et al. 1984) gave rise to a new approaathvéd to the detection of relative
variations in seismic velocity between earthquake doslded multiplets. In the same way, the
seismic coda wave interferometry technique developed Isd8gnet al. (2002) has confirmed the
existence of detectable precursory crustal changes @@t 2005; Wegler et al. 2006), but is
only practicable in cases where records of highly similathepiake doublets are available.

More recently, seismic noise has become an increasinglylpppand promising area of study,
as it circumvents the limitations imposed by a dependencén@mccurrence of seismic events.
This is due to the possibility of retrieving seismic Greefuiactions from the cross-correlation

of records of a random seismic wave field taken at varioustilmea within a region of interest

*



MWCS: assessment of resolution and accurac$
(Weaver & Lobkis 2001; Lobkis & Weaver 2001; Campillo & PaWlB; Shapiro & Campillo
2004; Shapiro et al. 2005; Sabra et al. 2005). Indeed, thefusebient noise cross-correlations
for monitoring has been shown to be robust even when congifpoevent the full reconstruction
of the seismic Green'’s function (C. Hadziioannou et al. 20U8aver et al. 2009).

Because seismic noise is recorded continuously and doedepend on earthquake sources,
these cross-correlationd) functions can be considered analogously to records framtiraoously
repeating doublet sources placed at each station, and cambarly used to extract observations
of variations in seismic velocities.

The main idea for monitoring the evolution of seismic veli@s over time using seismic noise
is to compare “current” cross-correlation functions thegiresent the situation at a given time pe-
riod to “reference” functions that represent an averag&dpatind state of the studied media. We
can distinguish between two different approaches thatsed tor the extraction of seismic veloc-
ity variations from cross-correlations and operate in tmetand frequency domains, respectively.
The first method, known as Coda Wave Interferometry, wasrdestby Snieder (2006), and later
evolved to Passive Image Interferometry (Sens-Schoafé&dVegler 2006; Wegler et al. 2009) for
noise sequence cross-correlations. The second methoceeasnamed Moving-Window Cross-
Spectral Analysis (MWCS) by Ratdomopurbo & Poupinet (19894 is the focus of the present
study. In fact, although approaches in both the time anduerqy domains have found interest-
ing applications showing similar sensitivities (Wegleaét2009), the MWCS technique has the
advantage of operating in the frequency domain, where thev@th of coherent signal in the
correlation function can be clearly defined.

The main goal of this paper is to assess the accuracy of tbheityelariations measured from
noise cross-correlations with the MWCS technique and, itiqudar, how this accuracy depends
on the quality (i.e., signal to noise ratio, SNR) of the restamcted:c functions. We start by briefly
introducing the main concepts of the MWCS method with mosttetechnical details described in
Appendix A. Then, we use a set of noise cross-correlatiomgpaed from records of the seismic
stations of the Piton de la Fournaise volcano (La Réuniam)itaring network shown in Figure 1.

First, we study the convergence of thesegunctions and their fluctuations in the time and
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Figure 1. Map of stations (named black squares) used in this sinsigt: La Réunion island. The black box
outlines the part of Piton de la Fournaise shown in the maiepa

frequency domains. Then, we construct a set of synthetereate and current functions by
stretching the observed functions to mimic velocity variations within the media aoygladding
random noise with spectral properties similar to obserasedom variations. We apply the MWCS
measure to these syntheticfunctions and compare the inferred velocity variationhwkihown
a-priori introduced values. We finally propose thresholdea of SNR above which small velocity

variations can be reliably retrieved and subsequentlypnéted.
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2 MOVING-WINDOW CROSS-SPECTRAL ANALYSIS

The Moving-Window Cross-Spectral technique was first istied by Poupinet et al. (1984) for
the retrieval of relative velocity variations between bgttake doublets. More recently, Brenguier
et al. (2008a,b) exploited this technique by applying itéssiic noise records, taking advantage
of the possibility of treating noise cross-correlationsaimalogy with doublets. Here we describe
only the general purpose of the technique, leaving all cdatnal details to Appendices A and
C.

This analysis is applied to time series which are computedrbgs-correlating the noise se-
guences recorded at two different seismic stations, fgp@gkible station pairs. The preliminary
step for the analysis is to build up at least one referencesamdral current cross-correlations.
Since, for computational purposes, the continuous noisards are cut into short sequences (for
example, one for each day or hour), it is necessary to staektaiic number of singlec’s. In this
framework, the reference and current functions are defiyettidd number of summedt’s: N,.;
and N, respectively. The only requirement is thit.; >> N, to ensure the reference is
representative of a background value, while the curcenbntains information on the actual state
of the crust.

For any couple of referencey,.;, and currentec.,,, functions, the technique combines two
steps. The first step consists in the computation of the tdelay between the two signals within a
series of overlapping windows. The second step is the etvafuaf the relative velocity variation
associated to the current function with respect to the eefse. In this second step, it is assumed,
for simplicity, that the seismic wave propagation velocgtyerturbed homogeneously within the
studied media.

It is important to note that the first operation is executethaspectral domain, through the
study of the phase of the cross-spectrum, allowing for peeselection of the frequency band on
the basis of the coherency between the two windoweési(see Appendix Al). Each computed
delay-time corresponds to a cross-correlation lag-tinteclvis taken as the central point of the
window. Therefore, the second step involves the evaluaifahe trend, ot /¢, of the delay-time

estimates over the whole length of the signals (see FigujeTkie slope of their linear regression
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indicates, to a first approximation, the relative homogeseelocity perturbation of the current
cc with respect to the reference.

Critical points in the MWCS analysis are the choices\pf;, N..,, the length and overlap of
each window and the total number of windows which are useds&lare all required for the first
step. The choice of these parameters will depend on the abasdics of the:c functions such
as their length, frequency content and how fast the sigredydebelow the noise level. The aim
of our work is to test the reliance of both the resolution ancligacy of the measurements on the

quality of thecc functions, which can be quantified in terms of their signalacse ratio.

3 RANDOM FLUCTUATIONS AND CONVERGENCE OF OBSERVED NOISE
CROSS-CORRELATIONS

Measuring the signal to noise ratio (SNR) of a stacked setasisccorrelation functions is needed
to distinguish between stacks from which reliable delayes can be measured, and those from
which they cannot. Furthermore, the simulated SNR of theszpwmrrelations we use in our tests
must be compatible with this measure. We employ the methedrited by Larose et al. (2007),
which is summarized below.

First, to estimate the level of noisg(/V, t), in a stack, we measure the variation between each

constituent cross-correlation functian(t), at each lag-time,, as follows

o, = | ET T "

Here, (-) denotes the average ovAr single functions. We then measure the level of signal,

s(N,t), in the stacked cross-correlation by taking its Hilbertedope
s(N, t) = [(ce(t)) + iH ((ce(t)))] (2)

whereH (-) denotes the Hilbert transform of the stacked functiart)) and: is the imaginary
unit. After we smooth(N, t) ando (XV, t) with a ten-second-wide sliding cosine window, the SNR

of the stacked cross-correlation function can be estimated

s(N,t)
(N, t)

SNR(N,t) = 3)
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Figure 2 demonstrates the measurement of SNR using thigohéfthe plotted cross-correlations
are from stations DSR and TCR near the summit of Piton de larfaige volcano, La Réunion
(Figure 1), during the thirty days preceding an eruptiontenorthern flank (Peltier 2007). Neither
the variation between the daily functions nor the estimatgdal are constant with The resulting
signal to noise ratio, however, is less variable. For th@pse of our tests, we simulate a signal to
noise ratio which is constant for allwvhen we add noise to our cross-correlation functions.

Figure 3 shows how the SNR of a cross-correlation stack abspemV. Here, we stack various
numbers of consecutive daily cross-correlations fromiatatDSR and TCR. Days of missing
data and of eruptive activity are skipped, and the plottédesof N are the number of remaining
days. This plot shows that SNR grows at a rate which is justtlesn proportional ta/N. While
SNR appears to increase monotonically wih it may in many instances be affected by drastic
changes in the geology of the region under investigatiothisxexample, we avoid the collapse of
Dolomieu crater at the start of 2007 on the summit of Pitoredédurnaise volcano by only using
cross-correlations between the years 1999 and 2006.

Figure 4 shows the relationship between the error estimatgtle MWCS techniquee( de-
fined by Equation A.12 in Appendix A2) and the SNR calculatbdve. Here, current- and ref-
erence functions are formed by grouping daily cross-catigais from stations DSR-TCR into
30-day and 300-day stacks, respectively. For each curnehtederence function pair between the
years 1999 and 2006, we measure delay-times within 6 seeatellag-time windows. We then
attribute the mean current function SNR within each windowtd corresponding delay-timg.
Finally, we calculatejt/t along with its accompanying error as explained in AppendixTAis
error, expressed relative #0/t, is plotted against the mean of the attributed SNR valuase&ch
of the plotted ranges @t /t|, these errors appear to be anti-correlated with SNR. Figatanma-
rizes these observations for station pairs DSR-TCR and EBBR--These plots show a consistent
inverse proportionality between the errors and the caledI&NR values, verifying that this mea-
sure of SNR may be eventually used to assess the quality of theneasurement obtained from

noise correlations.
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Figure 2. The calculation of SNRa: A set of thirty single-day cross-correlation functionsefgicurves)
and their stacked mean (solid black curve). The dotted btacke is the signal envelope of the stack,
and is smoothed with a ten-second-wide cosine window.he smoothed noise measured from this set of
cross-correlationsc: The resulting SNR is the ratio of the signal envelope and tigen
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Figure 3. A plot of SNR versus number of stacked days (N). Results grarated into bins ofn(N) and
In(SNR). Counts are plotted as shades of grey after normalizatitimméach column of the plotted grid.
Dark shaded bins have high counts relative to lightly shdiesl. SNR is averaged ovét > 10 seconds.
The dashed curve and displayed slope are from a linear segnesf the plotted values.
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4 SYNTHETIC CROSS-CORRELATION FUNCTIONS

To test the sensitivity of the MWCS technique, we constriggtrdhetic data set as follows: first, we
take a reference function from real cross-correlation®wsic noise, then stretch it to simulate a
series of homogeneous seismic velocity changes. Thigktsachieved by resampling the cross-
correlations with a Fourier-transform based interpolatigffectively, this involves zero-padding
the cross-correlation in the Fourier-domain, then takimgitiverse transform. When the original
sampling interval is applied, the interpolated cross-<atron becomes a stretched version of the
original. We then add random noise to each stretched cisslation function to simulate a
set of possible signal to noise ratios. Finally, treating dhiginal function as the reference, and
each stretched, noise-added function as the current &maire attempt to recover the applied
stretch using the MWCS method and to see how the resultimgsedepend on the level of the
added noise. For these tests it is important to use syntheise with properties close to the real
random fluctuations of the observedfunctions. Therefore, we first characterize the spectra of
these observed fluctuations and then propose a procedurautate a random noise series with

defined spectral properties.

4.1 Spectrum of the observed random fluctuations

A simple way to view a pair of stacked current and referenasseicorrelation functions is to
treat the current functioree.,.(t), as a contaminated version of the relatively noiselessarte

function, cc,.¢(t).
CCour () = CCref(t) + n(t) (4)

To observe one realization of the impinging noisg,), we simply subtract the current function
from the reference function.

Figure 6 shows an example of a current and a reference functimputed for stations DSR
and TCR on Piton de la Fournaise volcano, La Réunion. Thereate function is a stack of
the 300 days preceding an eruption on the volcano’s sougtemsflank (Peltier 2007), while the

current function is a stack of the last thirty of those dayishdugh the level of the noise appears
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Figure 6. Observation of noise in real cross-correlation staak# 300-day reference stack (dashed curve)
and its associated 30-day current stack (solid cutye].he difference between the reference and current
stack is taken as an observation of noise. Small lag-timesmuitted from the calculation as they are not
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respectively, of the observed noise (solid curves) anddference stack (dashed curves).

to be relatively low compared to that of the reference fuorgtexamination of its spectrum reveals

that the amplitude of the noise is at least comparable toahtite reference function at certain

frequencies.

between the years 1999 and 2006. Then, by averaging thearesdpamplitude spectra, we ob-

For every station pair, we calculatgt) for all available current and reference function pairs
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serve a typical noise spectrum which we can use to contaenatsynthetically stretched cross-

correlation functions (e.g., Figure 6¢ and 6d).

4.2 Simulating random noise with pre-defined spectra

To contaminate our synthetic cross-correlation functioves randomly perturb each value by an
amount drawn from a Gaussian distribution. The standaréatien of this distribution is chosen

as follows

_ st
- SNR(t) ®)

Tsynth ()
wheres(t) is the signal envelope of the synthetic function, & R(¢) is the desired signal to
noise ratio. We discuss whether or not the use of a Gaussanibdtion to simulate noise in this
way is appropriate for our cross-correlations in Appendix D

To ensure that the noise exists in the appropriate frequbang, we apply the method de-
scribed by Percival (1993) to produce a random time-sert@siwshares the same spectrum as
that observed in real data. After normalizing to unit stadddeviation, we scale the resulting
noise byo,,..,(t), then add it to our synthetic cross-correlation function.

Figure 7 demonstrates how noise is prepared in this way. Tigenal function is a stack
of all available daily cross-correlations computed betwstations DSR and TCR in the year
2002. Noise is generated using the spectrum which is obdéovehis station pair, then scaled to

produce a constant signal to noise ratio. This noise tatetBequency range in which real noise

is observed and in which delay-times are to be later measured
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Figure 7. Addition of random noise to a synthetic cross-correlationction from stations DSR and TCR.
The signal level 4, dotted curve) is estimated from the original function ig@urve). Paneb shows the
spectrum of the cross-correlation function. Random Ganssbise €) is produced with a spectrund)(that
simulates that of the noise which is observed for the stggan This noise is scaled in time &andf), then
added to the original cross-correlation functigrafidh).

5 RESULTS OF SYNTHETIC TESTS
For every station pair, we simulate 1000 random synthegiliz&tions of currentc functions with

predefined stretching coefficients mimicking velocity pdpations and predefined signal to noise

ratios. Then, we analyze the resulting setiof (stretch) estimates and their accompanying errors.
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Figure 8. Histograms for two sets of stretch estimat@sThe applied stretch is 0.05 % and the simulated
SNR is 3.b: The applied stretch is unchanged, but the simulated SNRcigased to 8. The reference
cross-correlation is from stations DSR and TCR.

We show results of sensitivity tests for vertical-compdnecords from two pairs of stations
on Piton de la Fournaise volcano, La Réunion. For eaclostatiir (BOR-SFR, and DSR-TCR),
we stack every available daily cross-correlation functo@tween the years 1999 and 2006 to
construct our reference function, then filter between 0dLlaf Hz.

To construct current functions, we stretch these referemoss-correlations by a range of
values,S = {0.01%, 0.02%, ... , 0.10%}, then add noise to simulate signal to noise ratios of
SNR = {1, 2,..., 10}. Finally, we use six-second-wide lag-time windows whicleidap by
three seconds to compute delay-times (See Appendix A).

For each pair of simulated stretch and SNR valifes$ N R), we obtain 1000 stretch estimates,
S;, 1 € [1,1000], and their associated least-squares errg(standard deviations) from the MWCS
technique. Figure 8 shows the distribution of these esémr two different values of SNR. In
both cases, these estimates form an approximately bedeshdistribution centered around the
true stretch of 0.05%. In the case of low SNR, these estinfates a wide distribution (Figure
8a) due to the high level of noise in the cross-correlatiand,we cannot confidently recowv&r/'t.
When SNR is increased (Figure 8b), the distribution narr@mst /¢ is better resolved.

To quantitatively assess the level of systematic error amesat of estimates, we calculate their

relative bias as follows
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Figure 9. Relative bias calculated for ea¢H, SN R) pair using Equation 6. Cross-correlation functions are
taken from @) stations DSR—TCR and) stations BOR-SFR. Light colours indicate a small relaliizes.

b(S,SNR) = WT_S (6)

Figure 9 shows this measure for stations DSR-TCR (Figura®a)BOR-SFR (Figure 9b). For
both station pairs, the relative bias is never more than @&neent, provided the simulated stretch
and SNR are large enough (say, above 0.02% and 3, respgptiVlis suggests the MWCS
method introduces very little systematic error.

To assess the total relative error over the 1000 trials foln €8, SN R) pair, we calculate their

misfit from the true stretch as follows

1 S, — 9)2
etotal (S, SNR) = 5 X Zlg)o()i_l) -

This incorporates both the systematic and the random ereach set of 1008; estimates. Figure
10 shows these measures for the two station pairs descriose aHere, colors indicate the level
of error, expressed as a percentage of the true stretch. pexed, this error decreases as either
the applied stretch or the simulated SNR are increased.

We compare this errog,.,;, evaluated from the synthetic test with errors evaluatedfr
the least-squares fit during the MWCS analysis (Appendix. &B) every synthetic current
function, we evaluate the least-squares error and then atenis mean value for a given pair of

stretching coefficient and SNR;) (S, SN R). Figure 11 shows the ratio of errors estimated from
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Figure 10.Total errors calculated for each pair using equation 7. €owsrelation functions are taken from
(a) stations DSR-TCR andb) stations BOR-SFR. Cold colours indicgt& SN R) values for whichyt /t
is well resolved using the MWCS technique.

the synthetic test and from the MWCS least-squares fit foiostpairs DSR—-TCR and BOR-SFR.

For both station pairs, the least-squares error underatgsrthe total variability of the targeted

velocity variations by a factor of around six for most valo@SNR and for all applied stretching

coefficients (Figure 11). We address the cause of this giac®y in Appendix B.

Finally, we plote,.;,; against SNR (Figure 12) to see if the estimates we obtaimgur tests

exhibit the inverse relationship between cross-corm@teduality andit /¢ error that we see for real
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Figure 11. Ratio between the total error and the error estimated fraanMRVCS least-squares fit as a
function of SN R. Cross-correlation functions are taken froa $tations DSR—TCR andb) stations BOR—
SFR. One line is plotted for each simulated stretch (seatge
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Figure 12. Total error plotted as a function of SNR. Cross-correlafianctions are taken fromaj stations
DSR-TCR andHl) stations BOR-SFR. One line is plotted for each simulatezicdt (see legend in Figure
11) along with its estimated slope (dashed lines).

data (Figures 4 and 5). When viewed on a log-log scale, tlessgts exhibit a clear anticorrelation.
Reassuringly, the similarity between this plot and Figutesd 5 demonstrates the consistency

between the SNR we simulate and the SNR we measure from rt@al da

6 DISCUSSION AND CONCLUSIONS

To assess the accuracy of the velocity variations meastvadrfoise cross-correlations (CC) with
the MWCS technique we constructed a set of synthetic CC immgtcorresponding to known
media velocity variations (stretching coefficients) andyoded by random noise with statistical
properties similar to those observed at the stations of itoe Fle la Fournaise seismic network.
Our analysis resulted in simple relations between the acgwf the recovered velocity variations
and the Signal-to-Noise Ratio (SNR) of the analyzed CC fonst(Figure 10). In turn the SNR
is on average simply related to the duration of the noiserdefrom which the CC function was
computed (Figure 3). These results provide us with a simyldegnce on how to choose an optimal
stack duration to recover a desired level of media veloatyations. In particular, for the case of
the seismic stations on Piton de Fournaise volcano, ouysisahdicated that recovering a relative
velocity perturbation 0.1% from a single pair of stations requires an SNR~of5 that can be

obtained by stacking a few tens of days of noise correlatiohg implies in particular that the
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accuracy of measurements presented by Brenguier et aBIf20§ averaging measurements from
many station pairs could be barely achieved from analyzisiggle pair of stations.

Another important result of our analysis performed withtegtic CC functions is that the
formal error computed from the linear regression withintMi&/CS technique does not match the
true uncertainty of the recovered relative delay-timeshécase of our tests, the true error appears
to be around six times greater than that which is estimathis mismatch is mainly due to the
fact that the least-squares error is not uniquely definetddépends on the parameters used in the
the application of the MWCS technique (See Appendix B). Fpaiicular choice of parameters,
this error may underestimate the real uncertainty of thewexed velocity variations. A further
explanation is that the MWCS technique effectively usey onle realization of the CC function
with a relatively short duration (because of the fast deddlgedcoda part of the recovered Green’s
functions). This single and short realization is not repngstive of the full variability of the CC
functions. The sampling can be improved by using multipiespaf stations simultaneously as has
been done by Brenguier et al. (2008a,b). Nonetheless, therfeelating the MWCS error with
the total error is roughly independent of both SNR and theianeelocity variation. Furthermore,
we observe the same factor (Figure 11) for both pairs ofastatconsidered in our study, BOR—
SFR and DSR-TCR. This means that, in the case of Piton de lan&ise seismic noise cross-
correlations, and for this particular choice of parameteescan apply a correction to the MWCS
errors by simply multiplying their values by a factorof6.

A main conclusion from our study is that before systemaiiagbplying noise-based MWCS
monitoring of temporal media changes in a particular sgtiins important to investigate the sta-
tistical properties of the seismic noise and the converg@haoise correlations. This analysis is
necessary to establish the correction factor for the MWE&eand also the optimal durations of
correlated time series. So far, our results indicate thatvering relatively weak velocity changes
associated with moderate volcanic activity (Brenguiel . €2@08b), intermediate-size earthquakes
(Brenguier et al. 2008a) or with seasonal variations (Meteal. 2010) requires stacking correla-
tions from a few tens of days and averaging measurementsrfrany pairs of stations. Further

improvement of temporal and spatial resolution of the MWG&surements could be eventually
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achieved by applying additional steps in the data procgssich as data adaptive filtering (Baig

et al. 2010).
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APPENDIX A: MWCS

In the following section, the method of Moving-Window CreSpectral analysis (MWCS) is de-

scribed in the context of stacked reference and currensarogelation functions.

Al Time-delay computation

The first step in the MWCS analysis is the calculation of deimes,dt, between the two cross-
correlation functions within a series of overlapping lage windows.

Each cross-correlation function is divided indg, windows, one for each delay-time mea-
surement. The choice of window length, overlap, ahdwill generally depend on the frequency
content and the SNR of the cross-correlation functions uodesideration. The windowed seg-
ments are mean-adjusted and cosine-tapered before beimgpfwansformed into the spectral
domain.

In Figure Al (a), an example of a windowed pair of cross-datien functions is shown. The

cross-spectrumX (v), between the two windowed time-series is calculated asvill

X() = Freg(v) - Fio(v) (A1)

cur

whereF,.¢(v) and F,,,.(v) are Fourier-transformed representations of the windowed-series,
v is frequency in Hz and the asterisk denotes complex conpugdtor our purposes, it is more

useful to represent the complex cross-spectrum by its &ndeli.X (»)| and phase(v)
X(v) = [X ()| e (A2)

One requirement of cross-spectral time-delay estimasahat, aside from being shifted in
time, the two windowed time-series are similar. Such sintylas quantitatively assessed using

the cross-coherencg(r) between their energy densities:
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oy X0)|
VIEe )P - [P )

Here, the overlines indicate smoothing, which in our casebisined by applying a sliding

(A.3)

raised-cosine function with a half-width of 0.1 Hz to the eyyaedensity spectra of the two Fourier-
transformed time-series and to the real and imaginary patke complex-valued cross-spectrum.
The cross-coherence ranges between zero and one, with oraxualues approached at those
frequencies where the two spectral densities are highlifasim

The time-delay between the two cross-correlations can bedon the (unwrapped) phase,

¢(v), of the cross-spectrum, which will be linearly proportibtafrequency.
o =m- v, m = 2ot (A.4)

The time shift,6¢; (subscripti for thei** window), between the two signals is estimated from
the slopem of a linear regression of the samplgs= [, ..., h, within the frequency range of
interest (see Figure A2, pangl During the regression, a weight, which depends on the cross-

coherence at each sampled frequency, is assigned to eashpirase value.

2
w:¢hg¢m&\ (A5)
J

Unlike Poupinet et al. (1984), these weights incorporatth libe cross-spectral amplitude

and the cross-coherence. This generates more differethtvaights in cases where the cross-
coherence is relatively constant but the cross-spectembgns variable. Figure A2, panklshows
such an example. This choice of weighting is described irendetail in Appendix C.

Using a weighted least-squares inversion, the slapg estimated as
h
> wivie;
_ =
m=—=
> wiv
j=l
The associated errat,,, is calculated using the rule of propagation of errors

2
— wjvj
em =] <Zi ww?) o2 (A7)

J

(A.6)

whereo is the squared misfit of the data to the modeled slope anddslesd as
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Figure Al. a: A pair of a real reference (from Piton de la Fournaise) and rahgjic current cross-

correlation, along the time interval between -30 and 30 s.dthirent function is generated by stretching the
reference by 0.1%. The black rectangle delimits one of thelaws used in the analysis (6s long, sliding
3s).b: The second step in the MWCS analysis: a linear regressionghrweighted least-squares over the
time delays that have been computed during the first stejh ttae-delay is associated with the mean time
in its sliding window. The straight red line is the fitted stognd the dotted lines highlight the error margins.

s 2oy(dy —myy)?
Oy = N1 (A.8)

Following Equation A.4, the time delayt, and its errores;, between the two signals are taken
by simply dividingm ande,,, respectively, byr.

Repeating this process for all windows, we obtaip delay-time estimates between the two
cross-correlation functions, each corresponding to tidraktime,t; (i = 1, ..., N,,), of the win-
dow in which it was measured.

It is important to keep in mind that, for a given frequencygeyes; is inversely proportional
to the square-root of the number of values that are used imteesion. This means that if the
windowed cross-correlations are zero-padded prior toiEptransformation, the error estimate
will be artificially reduced. Multiplyinges, by /Ny, whereNy, is the number of points in the

Fourier-transformed time series, removes this dependence
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A2 Velocity variation results

To a first order approximation, we can consider a stress fiettugation which acts homoge-
neously over the region sampled by the cross-correlateningeinoise. Under this assumption,
the resulting seismic velocity perturbatiéon/v within that region will also be homogeneous, and
be manifest as a stretchingdt/t of the current cross-correlation function relative to théer-
ence function. This stretching is constant oveand is numerically the opposite of the velocity

perturbation (Poupinet et al. 1984).

it _ o
t v

(A.9)

Consequently, to recovew /v, we apply a linear regression to tié, delay-time measure-

ments (Figure Al).

where the coefficient represents a possible instrumental drift (Stehly et al720é&ndb cor-
responds to the relative time variatiotyt. Again, we can estimate these two parameters through
a weighted least-squares inversion. Here, the weightare determined using the estimated error
of each time-delay measuremept:= 1/e5, . The resulting estimate fér= —dv/v is then

Yo pilts = (t))ot;
"= Yopi(ti — (1))? (A.11)

with variance

= #12
while the intercept is

a = (6t) — b(t) (A.13)
with variance

2 (t*) (A.14)

D CENT)E
where(t) = > piti/ > pi, (0t) = pidt;/ > p; and{(6t?) = > p;0t?/ > p; are weighted means

of t, 5t andt?, respectively.
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Figure A2. Example of how a delay-time is measured between two wind@ress-correlationsa: zoom-

in of the two cross-correlations within a single lag-timenddw (black rectangle in Figure A1, panel b).
Coherency calculated for the two windowed signals at atjdeciesc: Linear regression for the phase
displacement along the frequencies of interest (0.2 to @) Which have been marked with red asterisks

and errorbarsl(/w?).

An important feature of this formulation is that, for a givaorrelation-time interval, the error
of the relative velocity variatiorg,, is inversely proportional to the square-root of the number
of delay-times that are used in the regression. Conseguéntthe number of sliding windows
N, is increased by reducing the time-step between conseonina@ows, then the error will be
artificially reduced. This is similar to the dependence afhedelay time erroes, (Equation A.7)
on the number of points used in the Fourier transform of thedawed data. Multiplying the

estimated error by, is one way to remove this dependence.

APPENDIX B: DEPENDENCE OF ERRORS ON MWCS PARAMETERS

In Section 5, we observe a discrepancy (Figure 11) betwestotal errors we obtain from the dis-
tribution of each set of 1000 stretch estimatgs{;, Equation 7) and the estimated least-squares
error defined by Equation A.12. One explanation for this esdlependence of the estimated er-

ror on the number of sliding windowsy,,, into which our cross-correlations are divided (see
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Figure A3. The dependence 6t /¢ errors onN, s, andN,,. Total errors 4, Equation 7) and average least-

squares errord( EquationA.12) are plotted as a function of the time-step between six+skedade sliding
windows. One curve is plotted for each value/df;; (see legend). Cross-correlation functions are taken
from station pair BOR-SFR. In all cases, the MWCS techniguapplied 1000 times to cross-correlations
that have been stretched by 0.05% and have a simulated sigmailse ratio of 5.

Appendix A2). In turn, this value is affected by the delayéimrrors,e;; (Equation A.7 in Ap-
pendix A1), which themselves are dependent on the numbeiofpN; ;,, used to transform the
windowed cross-correlations into the Fourier domain.

We observe the behaviour of the total error and the estineated as these two parameters are
varied. To this end, we alte¥,, by adjusting the time-step between consecutive six-sevodd
windows, andVN;;, by zero-padding the windowed cross-correlations priordorfer transforma-
tion. Figure A3 shows the total error (Figure A3a) and therage least-squares error (expressed
relative todt/t, Figure A3b) we obtain when a stretch of 0.05% and a signabtsenratio of 5
are simulated for station pair BOR-SFR. Each point cornedpdo 1000 trials for a given choice
of N,, andN;,. These plots demonstrate the inverse proportionality €etwthe estimated error
and the square-root of botN,, and N;;. Interestingly, the total error also appears to increase
slightly with the time-step, suggesting that a choice oflltg overlapping windows improves the
precision of the relative travel time measurements thavhtained. However, the associated error
estimates must be calibrated in order to accurately evalbat true precision of these measure-

ments.
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APPENDIX C: TEST ON THE WEIGHTS

In Section Al we introduce weights; (Equation A.5) to be associated to eaghwhen estimat-
ing time shifts between cross-correlation functions. lis #ection, we test the influence of these
weights on the results. In order to search for the most deifabmulation ofw;, we compare the

accuracy of the yielded estimates for three different wigilgfinitions:

/ o2
1ij]2 (1)

C?
w={ LVI% @

\ 1%; VIXiE ()

Using these weights, we apply the MWCS analysis to a referand a synthetic current function
which has been perturbed from the reference by stretchtoditl %. Starting from this noiseless
current function, we add noise (as described in Sectiontd.2@ach final signal to noise ratios
of 10, 5, 2 and 1. The resulting estimates are shown in Figdréafand b, respectively) for the

relative error on time delay computations, and for the negatelocity variation recovered (named
stretch). These measurements are in close agreement vathrwmther, revealing only a slight

dependence on the weights that are used. We choose to,(3eas it produces differentiated

weights in cases of near constant coherence, and perfoighdl\sbetter than the other schemes
in these tests. Furthermore, these findings stress the tamuerof the noise level on the resolution

of the MWCS technique as the errors shown in Figure A4 aregtyadependent on SNR values.
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Figure A4. a) Relative error of time delay estimations versus SNR féfeint weights. Each symbol
corresponds to one of the three definitionsugf b) Final results of the MWCS analysis in varying the
weights and the SNR level. The symbols match those in pangi@plack horizontal line shows the real
value of stretching between the two CCs.

APPENDIX D: DISTRIBUTION OF OBSERVED FLUCTUATIONS

In Section 4.2 we simulate noisy cross-correlation fumgiby contaminating them with a random
time-series whose squared amplitude spectrum mimics thhedluctuations we observe in real
data. This time-series is drawn from a Gaussian distributrdh random phase. In this section,
we determine whether such a series is representative ofutteidtions that exist in real cross-
correlations.

As described in Section 4.1 we observe the real fluctuatioosi cross-correlations by taking
the difference between corresponding current and referenwtions. The cross-correlations we
use in the following examples are from station pair BOR-SKRPiton de la Fournaise volcano,

and were measured during the period between 1999 and 2006.
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Figure A5. Distribution of the time-domain amplitudéett) and unwrapped phasgght) of the fluctuations
in the current functions measured at stations BOR and SFRstégnam {op) and a quantile-quantile plot
(bottom) is shown in each case. The plotted values are coloured byuimder of eruption days contained
in each 30-day current stack. Colours range from blue (nptenu days) to red (30 eruption days ).

We first analyze the distribution of these fluctuations in tinee-domain (Figure A5, left),
then consider their phase distribution (Figure A5, righit¢atransforming them into the Fourier
domain. In both cases, we plot a histogram (top) and a qeaquéntile plot (bottom) to check
for a Gaussian distribution. In this example, the time-donaastribution at 30 s lag-time, and
the phase distribution at 0.65 Hz are shown. The quantiéetje plots are made by applying
the inverse normal distribution function (with zero meard amit standard deviation) to each
ranked set of measurements. The resulting series are ¢plptetical axis) against the ordered
measurements (horizontal axis). As a reference, a lineotsgal through the quartiles of the two
series. If the plotted distribution is Gaussian, then thengjie-quantile plot should trace a straight
line. Deviations from the straight line are interpreted agiations from a Gaussian distribution.

Our tests show that the fluctuations we observe in real @osglations deviate slightly from a
simple Gaussian distribution with random phase, mostlyndueruptions. Therefore, the analysis
we present in this paper relies on the fluctuations being SsanisOne way to improve this analy-
sis for co-eruptive periods would be to characterize the tise distribution and randomly draw
from it when simulating noisy cross-correlations. Non&thks, the similarity between the mea-

surement errors we observe when applying the MWCS technmueal data (Figures 4 and 5)
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and those we obtain in our simulated tests (Figure 12) sugtfest the methods we use to create
synthetic noise and evaluate the level of fluctuation in cea$s-correlations are adequate for the

purposes of these tests.



