36 research outputs found

    Multiple roles of lymphatic vessels in peripheral lymph node development.

    Get PDF
    The mammalian lymphatic system consists of strategically located lymph nodes (LNs) embedded into a lymphatic vascular network. Mechanisms underlying development of this highly organized system are not fully understood. Using high-resolution imaging, we show that lymphoid tissue inducer (LTi) cells initially transmigrate from veins at LN development sites using gaps in venous mural coverage. This process is independent of lymphatic vasculature, but lymphatic vessels are indispensable for the transport of LTi cells that egress from blood capillaries elsewhere and serve as an essential LN expansion reservoir. At later stages, lymphatic collecting vessels ensure efficient LTi cell transport and formation of the LN capsule and subcapsular sinus. Perinodal lymphatics also promote local interstitial flow, which cooperates with lymphotoxin-β signaling to amplify stromal CXCL13 production and thereby promote LTi cell retention. Our data unify previous models of LN development by showing that lymphatics intervene at multiple points to assist LN expansion and identify a new role for mechanical forces in LN development

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    A multi-center study on the attitudes of Malaysian emergency health care staff towards allowing family presence during resuscitation of adult patients

    Get PDF
    BACKGROUND The practice of allowing family members to witness on-going active resuscitation has been gaining ground in many developed countries since it was first introduced in the early 1990s. In many Asian countries, the acceptability of this practice has not been well studied. AIM We conducted a multi-center questionnaire study to determine the attitudes of health care professionals in Malaysia towards family presence to witness ongoing medical procedures during resuscitation. METHODS Using a bilingual questionnaire (in Malay and English language), we asked our respondents about their attitudes towards allowing family presence (FP) as well as their actual experience of requests from families to be allowed to witness resuscitations. Multiple logistic regression was used to analyze the association between the many variables and a positive attitude towards FP. RESULTS Out of 300 health care professionals who received forms, 270 responded (a 90% response rate). Generally only 15.8% of our respondents agreed to allow relatives to witness resuscitations, although more than twice the number (38.5%) agreed that relatives do have a right to be around during resuscitation. Health care providers are significantly more likely to allow FP if the procedures are perceived as likely to be successful (e.g., intravenous cannulation and blood taking as compared to chest tube insertion). Doctors were more than twice as likely as paramedics to agree to FP (p-value = 0.002). This is probably due to the Malaysian work culture in our health care systems in which paramedics usually adopt a 'follow-the-leader' attitude in their daily practice. CONCLUSION The concept of allowing FP is not well accepted among our Malaysian health care providers

    Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau

    No full text
    14-3-3 proteins act as adapters that exert their function by interacting with their various protein partners. 14-3-3 proteins have been implicated in a variety of human diseases including neurodegenerative diseases. 14-3-3 proteins have recently been reported to be abundant in the neurofibrillary tangles (NFTs) observed inside the neurons of brains affected by Alzheimer's disease (AD). These NFTs are mainly constituted of phosphorylated Tau protein, a microtubule-associated protein known to bind 14-3-3. Despite this indication of 14-3-3 protein involvement in the AD pathogenesis, the role of 14-3-3 in the Tauopathy remains to be clarified. In the present study, we shed light on the role of 14-3-3 proteins in the molecular pathways leading to Tauopathies. Overexpression of the 14-3-3s isoform resulted in a disruption of the tubulin cytoskeleton and prevented neuritic outgrowth in neurons. NMR studies validated the phosphorylated residues pSer214 and pSer324 in Tau as the 2 primary sites for 14-3-3 binding, with the crystal structure of 14-3-3s in complex with Tau-pSer214 and Tau-pSer324 revealing the molecular details of the interaction. These data suggest a rationale for a possible pharmacologic intervention of the Tau/14-3-3 interaction.-Joo, Y., Schumacher, B., Landrieu, I., Bartel, M., Smet-Nocca, C., Jang, A., Choi, H. S., Jeon, N. L., Chang, K.-A., Kim, H.-S., Ottmann, C., Suh, Y.-H. Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau

    Point-of-care lithium monitoring in whole blood using a disposable, prefilled and ready-to-use capillary electrophoresis microchip

    No full text
    This paper describes a microfluidic capillary electrophoresis device with integrated conductivity detection. The device satisfies all major requirements for pointof- care testing, i.e., simple handling, low sample volume, fast measurements, clear readout, and inexpensive disposable cartridge usage. The system is currently being utilized and commercialized for monitoring lithium in whole blood, however, can potentially be applied to various other ions present in blood, urine or other bodily fluids. The chip contains a single inlet only and will be shipped prefilled with background electrolyte, sealed and blistered; ready for use at the patient’s place. A single droplet of blood is required to be placed inside the cartridge to perform the analysis typically within a couple of minutes

    Generating steep, shear-free gradients of small molecules for cell culture

    No full text
    We present the fabrication, characterization and cell culture results of a microfluidic device for generating steep gradient interfaces of small molecules (< 1 kDa) across cell culture with no convective shear stresses applied to the cells. We use a novel streamline of two fluids to generate stable and uniform gradient interfaces/boundaries by confronting one fluid with the other. We separate a gradient generation channel and a cell culture channel by a polyester membrane so that viscous shear stress by the bottom channel flow does not convectively disturb the chemical environment of cultured cells seeded on the membrane in the top channel. Using two-component dyes to characterize the steepness of the diffusional interface, we demonstrate 50 mu m wide steps for about 400 Da molecules. Using BCECF, a 689 Da pH-sensitive diffusible dye which is actively taken up by living cells, we demonstrate gradient boundaries narrower than five cell diameters in HeLa culture. We also demonstrate steep gradients of pH across cells in the same device. This work should be of interest to researchers attempting to generate gradients of small, rapidly diffusing molecules for studies in cellular differentiation and signaling.close32
    corecore