15 research outputs found

    Water vapour effects of cyclic oxidation on Fe-Cr alloys

    Get PDF
    Fe-Cr alloys (Cr: 9-30 wt%) were subjected to cyclic oxidation in Ar-20%O2, Ar-20%O2-5%H2O and Ar-10%H2-5%H2O (partial pressure of oxygen, pO2 = 1.1 ¥ 10-16atm). Oxidation weight change measurement showed that in general, increasing Cr content reduced the oxidation rate. At Cr 25%, the weight gain became very low due to formation of Cr2O3 layer. Adding 5%H2O to Ar-20%O2 accelerated the oxidation rate of alloys with Cr < 20%. However, this accelerating effect did not appear in high chromium content alloys. XRD analysis showed that for alloys with Cr < 20%, wustite and spinel were formed at low pO2, while at high pO2, hematite, iron oxide and spinel were formed. For high Cr content alloy only Cr2O3 was detected. Cross-section analysis showed that the spinel was formed by internal oxidation. The thickness and size of this internal oxide zone increased with increasing Cr content. A dense chromia layer was observed when the Cr content was above 25%. The oxides scales formed in water vapour were more porous and less compact than the scale formed in dry oxygen. The accelerating effect of water vapour on Fe-Cr oxidation is discussed in terms of gas-solid interactions

    Microstructural refinement and corrosion resistance improvement of heat-treated A356 alloy processed by equal channel angular pressing

    Get PDF
    The microstructure refinement, hardness and corrosion resistance of heat-treated A356 aluminium alloy processed by equal-channel angular pressing (ECAP) were investigated. ECAP was carried out at room temperature using a mold, with a channel angle of 120° via route A. Results of the investigation confirm that the flaky coarse silicon particles were effectively fragmented from 4.22 to 0.761 μm and the grain size reduced from 171 to 40 μm after four passes of heat-treated as-cast using ECAP process. ECAP processing increases the hardness of heat-treated as-cast alloy from 61 Hv to 125 HV after four passes. Heat-treated A356 alloy shows enhanced corrosion resistance from 0.0424 to 0.00149 mmy-1, after four passes. In this research, ECAP processing has been shown to improve the hardness and corrosion resistance of as-cast A356 alloy

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Surface morphology study on aluminum alloy after treated with silicate-based corrosion inhibitor from paddy residue

    Get PDF
    Aluminum alloys have extensive applications in engineering structures like aircraft due to their high strength-to-weight ratio. However, these alloys are very reactive and prone to corrosion attack. Paddy waste is one of the beneficial natural sources that have a potential contribution on inhibiting the corrosion attack. At 600°C, silica was obtained from rice husk ash. The chemical reaction between silica powders with concentrated alkali generates formulation of potential silicate-based corrosion inhibitor. The potentiodynamic polarization, optical microscope (OM), infinite focus microscope (IFM) and scanning electron microscopy (SEM) were employed to investigate the corrosion behaviour of Al 6061 through electrochemical and surface study. The electrochemical measurement showed that the existence of silicate-based corrosion inhibitor in 0.5 M hydrochloric acid medium significantly mitigates the corrosion rates. SEM, IFM and OM showed that the morphology of untreated Al 6061 contributes more damage on the sample surface than that of Al 6061 treated with silicate-base corrosion inhibitor. The aim of this study was to attain better understanding of surface study on corrosion behaviour of aluminum alloy in acidic medium after treated and untreated with silicate-based corrosion inhibitor from paddy residue

    Surface morphology studies of low carbon steel treated in aqueous lignin

    Get PDF
    The effect of corrosion inhibition of low carbon steel in water based medium containing lignin was investigated via weight loss method. The evolution of surface morphology has been carried out for 7 to 42 days via optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron microscopy (XPS). Immersion of metal specimen without lignin shows that significant increase in the surface roughness. The longer the immersion time, the more the oxide crust formed. The surface degradation of metal specimen was well protected by immersion in lignin solution. A protective layer containing of lignin was formed on the surface of metal specimens after 7 and 21 days immersion. The corrosion inhibition gives about 13 and 53% inhibition for both 7 and 21 days immersion, respectively. The protective layers were spalling and separated from the metal surface after 42 days immersion in lignin solution possibly due to the increase in corrosion attack after long time immersion according to the increase in dissolved oxygen and may also due to the thermal mismatch between oxide and substrate. The adsorption of protective layer containing lignin was temporary adsorbed on the surface

    Ontology matching: a case of English translation of Al-Quran tafsir

    No full text
    The Al-Quran presents the sophisticated set of knowledge, which is organized in 30 Suras, with 6236 verses and several topics as the guidelines for every part of life. To comply with guidelines given by Islam, main challenges are to arrange, co-relate, extract, and find the correct meaning of knowledge engraved in these suras, juz, and verses. In this study, an argument in establishing ontology-matching technique is presented. The objective of this research is to present properties of Al-Quran tafsir knowledge. This study propose a highly granular ontology design for Al-Quran tafsir. Finally, to establish Ontology matching as knowledge management technique, this research presents experiments and results after applying word-matching technique. Presence of number of matching count in suras according to its theme proves the argument. © 2018 IEEE
    corecore