363 research outputs found

    Creation and Growth of Components in a Random Hypergraph Process

    Full text link
    Denote by an ℓ\ell-component a connected bb-uniform hypergraph with kk edges and k(b−1)−ℓk(b-1) - \ell vertices. We prove that the expected number of creations of ℓ\ell-component during a random hypergraph process tends to 1 as ℓ\ell and bb tend to ∞\infty with the total number of vertices nn such that ℓ=o(nb3)\ell = o(\sqrt[3]{\frac{n}{b}}). Under the same conditions, we also show that the expected number of vertices that ever belong to an ℓ\ell-component is approximately 121/3(b−1)1/3ℓ1/3n2/312^{1/3} (b-1)^{1/3} \ell^{1/3} n^{2/3}. As an immediate consequence, it follows that with high probability the largest ℓ\ell-component during the process is of size O((b−1)1/3ℓ1/3n2/3)O((b-1)^{1/3} \ell^{1/3} n^{2/3}). Our results give insight about the size of giant components inside the phase transition of random hypergraphs.Comment: R\'{e}sum\'{e} \'{e}tend

    A comparison of CFD and full-scale measurements for analysis of natural ventilation

    Get PDF
    CFD modelling techniques have been used to simulate the coupled external and internal flow in a cubic building with two dominant openings. CFD predictions of the time-averaged cross ventilation flow rates have been validated against full-scale experimental data under various weather conditions in England. RANS model predictions proved reliable when wind directions were near normal to the vent openings. However, when the fluctuating ventilation rate exceeded the mean flow, RANS models were incapable of predicting the total ventilation rate. Improved results are expected by applying more sophisticated turbulence models, such as LES or weighted quasi-steady approximations

    Agent-based modelling and inundation prediction to enable the identification of businesses affected by flooding

    Get PDF
    Flooding continues to cause significant disruption to individuals, organisations and communities in many parts of the world. In terms of the impact on businesses in the United Kingdom (UK), flooding is responsible for the loss of millions of pounds to the economy. As part of a UK Engineering and Physical Sciences Research Council funded project on flood risk management, SESAME, research is being carried out with the aim of improving business response to and preparedness for flood events. To achieve this aim, one strand of the research is focused on establishing how agent-based modelling and simulation can be used to evaluate and improve business continuity. This paper reports on the development of the virtual geographic environment (VGE) component of an agent-based model and how this has been combined with inundation prediction to enable the identification of businesses affected by flooding in any urban area of the UK. The VGE has been developed to use layers from Ordnance Survey’s MasterMap, namely the Topography Layer, Integrated Transport Network Layer and Address Layer 2. Coupling the VGE with inundation prediction provides credibility in modelling flood events in any area of the UK. An initial case study is presented focusing on the Lower Don Valley region of Sheffield leading to the identification of businesses impacted by flooding based on a predicted inundation. Further work will focus on the development of agents to model and simulate businesses during and in the aftermath of flood events such that changes in their behaviours can be investigated leading to improved operational response and business continuity

    Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    Get PDF
    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance–voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling

    The quantitative proteomic response of Synechocystis sp. PCC6803 to phosphate acclimation.

    Get PDF
    BACKGROUND: Inorganic phosphate (Pi) is a critical nutrient for all life and is periodically limiting in marine and freshwater provinces, yet little is understood how organisms acclimate to fluctuations in Pi within their environment. To investigate whole cell adaptation, we grew Synechocystis sp. PCC6803, a model freshwater cyanobacterium, in 3%, and 0.3% inorganic phosphate (Pi) media. The cells were allowed to acclimate over 60 days, and cells were harvested for quantitative high throughput mass spectrometry-based proteomics using the iTRAQ™ labelling technology. RESULTS: In total, 120 proteins were identified, and 52 proteins were considered differentially abundant compared to the control. Alkaline phosphatase (APase) activities correlated significantly (p < 0.05) with observed relative PhoA abundances. PstS1 and PstS2 were both observed, yet PstS1 was not differentially more abundant than the control. Phycobilisome protein abundances appeared to be coordinated, and are significantly less abundant in 0.3% Pi than 3% Pi cultures. Also, the central metabolic cell function appears to have shifted towards the production of (NADPH) reducing energy and nucleotide sugars. CONCLUSIONS: This acclimation response bears strong similarity to the previously reported response to nitrogen deprivation within Synechocystis sp. PCC 6803. However, it also demonstrates some characteristics of desiccation stress, such as the regulation of fatty acids and increased abundance of rehydrin in the 3% Pi culture

    Identification of Slow States at the SiO2/SiC Interface through Sub-Bandgap Illumination

    Get PDF
    We show that it is possible to obtain information relating to deep level interface traps, or so called ‘slow states’, by using the photo-CV characterisation method. Sub-bandgap illumination has been chosen in order to avoid band-to-band excitation for the creation of minority carriers. This enables information to be extracted from trapping states at the SiO2/SiC interface that are energetically deep within the band gap. Empirical observations of deep level trapping states with life times in the order of tens of hours are reported and the interface trap density as a function of energy has been extracted using the Terman method. Characterisation of these interface states will aid the development of new fabrication processes, with the aim of reducing the interface trap density to the same level as that of the SiO2/Si interface and facilitating the production of higher quality SiC based devices

    Cladoceran birth and death rates estimates

    Get PDF
    I. Birth and death rates of natural cladoceran populations cannot be measured directly. Estimates of these population parameters must be calculated using methods that make assumptions about the form of population growth. These methods generally assume that the population has a stable age distribution. 2. To assess the effect of variable age distributions, we tested six egg ratio methods for estimating birth and death rates with data from thirty-seven laboratory populations of Daphnia pulicaria. The populations were grown under constant conditions, but the initial age distributions and egg ratios of the populations varied. Actual death rates were virtually zero, so the difference between the estimated and actual death rates measured the error in both birth and death rate estimates. 3. The results demonstrate that unstable population structures may produce large errors in the birth and death rates estimated by any of these methods. Among the methods tested, Taylor and Slatkin's formula and Paloheimo's formula were most reliable for the experimental data. 4. Further analyses of three of the methods were made using computer simulations of growth of age-structured populations with initially unstable age distributions. These analyses show that the time interval between sampling strongly influences the reliability of birth and death rate estimates. At a sampling interval of 2.5 days (equal to the duration of the egg stage), Paloheimo's formula was most accurate. At longer intervals (7.5–10 days), Taylor and Slatkin's formula which includes information on population structure was most accurate

    4H-SiC Schottky diode arrays for X-ray detection

    Get PDF
    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm2 at an internal electric field of 105 kV/ cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes

    Heritability of the shape of subcortical brain structures in the general population

    Get PDF
    The volumes of subcortical brain structures are highly heritable, but genetic underpinnings of their shape remain relatively obscure. Here we determine the relative contribution of genetic factors to individual variation in the shape of seven bilateral subcortical structures: the nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus. In 3,686 unrelated individuals aged between 45 and 98 years, brain magnetic resonance imaging and genotyping was performed. The maximal heritability of shape varies from 32.7 to 53.3% across the subcortical structures. Genetic contributions to shape extend beyond influences on intracranial volume and the gross volume of the respective structure. The regional variance in heritability was related to the reliability of the measurements, but could not be accounted for by technical factors only. These findings could be replicated in an independent sample of 1,040 twins. Differences in genetic contributions within a single region reveal the value of refined brain maps to appreciate the genetic complexity of brain structures
    • …
    corecore