15 research outputs found

    The optical rebrightening of GRB100814A: an interplay of forward and reverse shocks?

    Get PDF
    We present a wide dataset of -ray, X-ray, UVOIR, and radio observations of the Swift GRB100814A. At the end of the slow decline phase of the X-ray and optical afterglow, this burst shows a sudden and prominent rebrightening in the optical band only, followed by a fast decay in both bands. The optical rebrightening also shows chromatic evolution. Such a puzzling behaviour cannot be explained by a single component model. We discuss other possible interpretations, and we find that a model that incorporates a long-lived reverse shock and forward shock fits the temporal and spectral properties of GRB100814 the best

    Implications for the origin of short gamma-ray bursts from their observed positions around their host galaxies

    Full text link
    We present the observed offsets of short-duration gamma-ray bursts (SGRBs) from their putative host galaxies and compare them with the expected distributions of merging compact object binaries, given the observed properties of the hosts. We find that for all but one burst in our sample the offsets are consistent with this model. For the case of bursts with massive elliptical host galaxies, the circular velocities of the hosts' haloes exceed the natal velocities of almost all our compact object binaries. Hence, the extents of the predicted offset distributions for elliptical galaxies are determined largely by their spatial extents. In contrast, for spiral hosts, the galactic rotation velocities are smaller than typical binary natal velocities and the predicted burst offset distributions are more extended than the galaxies. One SGRB, 060502B, apparently has a large radial offset that is inconsistent with an origin in a merging galactic compact binary. Although it is plausible that the host of GRB 060502B is misidentified, our results show that the large offset is compatible with a scenario where at least a few per cent of SGRBs are created by the merger of compact binaries that form dynamically in globular clusters

    A radial velocity survey of low Galactic latitude structures - III. The Monoceros Ring in front of the Carina and Andromeda galaxies

    Full text link
    As part of our radial velocity survey of low Galactic latitude structures that surround the Galactic disc, we report the detection of the so-called Monoceros Ring in the foreground of the Carina dwarf galaxy at Galactic coordinates (l, b) = (260°, −22°) based on Very Large Telescope/Fibre Large Array Multi Element Spectrograph observations of the dwarf galaxy. At this location, 20° in longitude greater than previous detections, the Ring has a mean radial velocity of 145 ± 5 km s−1 and a velocity dispersion of only 17 ± 5 km s−1. Based on Keck/Deep Imaging Multi-Object Spectrograph observations, we also determine that the Ring has a mean radial velocity of −75 ± 4 km s−1 in the foreground of the Andromeda galaxy at (l, b) ∌ (122°, −22°), along with a velocity dispersion of 26 ± 3 km s−1. These two kinematic detections are both highly compatible with known characteristics of the structure and, along with previous detections, provide radial velocity values of the Ring over the 120° < l < 260° range. This should place strong constraints on numerical models of the accretion of the dwarf galaxy that is believed to be the progenitor of the Ring

    SCUBA sub-millimeter observations of gamma-ray bursts IV. GRB 021004, 021211, 030115, 030226, 041006

    Full text link
    We discuss our ongoing program of Target of Opportunity (ToO) sub-millimeter observations of gamma-ray bursts (GRBs) using the Sub-millimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). In this paper, we present the ToO observations of GRBs 021004, 021211, 030115, 030226, and 041006. The observations of GRBs 021004, 021211, 030226, and 041006 all started within ~1 day of the burst, but did not detect any significant sub-millimeter emission from the reverse shock and/or afterglow. These observations put some constraints on the models for the early emission, although the generally poor observing conditions and/or the faintness of these afterglows at other wavelengths limit the inferences that can be drawn from these lack of detections. However, these observations demonstrate that SCUBA can perform rapid observations of GRBs, and provide encouragement for future observations in the Swift era. None of these GRBs had significant sub-millimeter emission from their host galaxies. This adds to the indication that GRBs are not closely linked to the most luminous dusty star-forming galaxies

    Anatomy of a dark burst - The afterglow of GRB 060108

    Get PDF
    We present a multiwavelength study of GRB 060108 – the 100th gamma-ray burst discovered by Swift. The X-ray flux and light curve (three segments plus a flare) detected with the X-ray Telescope are typical of Swift long bursts. We report the discovery of a faint optical afterglow detected in deep BVRiâ€Č-band imaging obtained with the Faulkes Telescope North beginning 2.75 min after the burst. The afterglow is below the detection limit of the Ultraviolet/Optical Telescope within 100 s of the burst, while is evident in K-band images taken with the United Kingdom Infrared Telescope 45 min after the burst. The optical light curve is sparsely sampled. Observations taken in the R and iâ€Č bands can be fitted either with a single power-law decay in flux, F(t) ∝t−α where α= 0.43 ± 0.08, or with a two-segment light curve with an initial steep decay α1 < 0.88 ± 0.2, flattening to a slope α2∌ 0.31 ± 0.12. A marginal evidence for rebrightening is seen in the iâ€Č band. Deep R-band imaging obtained ∌12 d post-burst with the Very Large Telescope reveals a faint, extended object (R∌ 23.5 mag) at the location of the afterglow. Although the brightness is compatible with the extrapolation of the slow decay with index α2, significant flux is likely due to a host galaxy. This implies that the optical light curve had a break before 12 d, akin to what observed in the X-rays. We derive the maximum photometric redshift z < 3.2 for GRB 060108. We find that the spectral energy distribution at 1000 s after the burst, from the optical to the X-ray range, is best fitted by a simple power law, FΜ∝Μ−ÎČ, with ÎČOX= 0.54 and a small amount of extinction. The optical to X-ray spectral index (ÎČOX) confirms GRB 060108 to be one of the optically darkest bursts detected. Our observations rule out a high redshift as the reason for the optical faintness of GRB 060108. We conclude that a more likely explanation is a combination of an intrinsic optical faintness of the burst, a hard optical to X-ray spectrum and a moderate amount of extinction in the host galaxy

    The Infra-Red Telescope on board the THESEUS mission

    Get PDF
    The Infra-Red Telescope (IRT) on board the Transient High Energy Sky and Early Universe Surveyor (THESEUS) ESA M5 candidate mission will play a key role in identifying and characterizing moderate to high redshift Gamma-Ray Bursts afterglows. The IRT is the enabling instrument on board THESEUS for measuring autonomously the redshift of the several hundreds of GRBs detected per year by the Soft X-ray Imager (SXI) and the X- and Gamma-Ray Imaging Spectrometer (XGIS), and thus allowing the big ground based telescopes to be triggered on a redshift pre-selected sample, and finally fulfilling the cosmological goals of the mission. The IRT will be composed by a primary mirror of 0.7 m of diameter coupled to a single camera in a Cassegrain design. It will work in the 0.7-1.8 {\mu}m wavelength range, and will provide a 10x10 arc min imaging field of view with sub-arc second localization capabilities, and, at the same time, a 5x5 arc min field of view with moderate (R up to ~500) spectroscopic capabilities. Its sensitivity, mainly limited by the satellite jitter, is adapted to detect all the GRBs, localized by the SXI/XGIS, and to acquire spectra for the majority of them

    The nature of the X-ray flash of August 24 2005 Photometric evidence for an on-axis z = 0.83 burst with continuous energy injection and an associated supernova?

    Full text link
    Aims.Our aim is to investigate the nature of the X-Ray Flash (XRF) of August 24, 2005. Methods.We present comprehensive photometric R-band observations of the fading optical afterglow of XRF 050824, from 11 min to 104 days after the burst. In addition we present observations taken during the first day in the BRIK\it BRIK bands and two epochs of spectroscopy. We also analyse available X-ray data. Results.The R-band lightcurve of the afterglow resembles the lightcurves of long duration Gamma-Ray Bursts (GRBs), i.e., a power-law, albeit with a rather shallow slope of α=0.6\alpha=0.6 ( FΜ∝t−αF_{\nu} \propto t^{-\alpha}). Our late R-band images reveal the host galaxy. The rest-frame B-band luminosity is ~0.5 L*. The star-formation rate as determined from the [O II] emission line is ~ 1.8 M⊙1.8~M_{\odot} yr-1. When accounting for the host contribution, the slope is α=0.65\alpha=0.65 ±\pm 0.01 and a break in the lightcurve is suggested. A potential lightcurve bump at 2 weeks can be interpreted as a supernova only if this is a supernova with a fast rise and a fast decay. However, the overall fit still shows excess scatter in the lightcurve in the form of wiggles and bumps. The flat lightcurves in the optical and X-rays could be explained by a continuous energy injection scenario, with an on-axis viewing angle and a wide jet opening angle ( \theta_j \ga {10}^\circ). If the energy injections are episodic this could potentially help explain the bumps and wiggles. Spectroscopy of the afterglow gives a redshift of z=0.828 ±\pm 0.005 from both absorption and emission lines. The spectral energy distribution (SED) of the afterglow has a power-law ( FΜ∝Μ−ÎČF_{\nu} \propto \nu ^{-\beta}) shape with slope ÎČ=0.56{\beta}=0.56 ±\pm 0.04. This can be compared to the X-ray spectral index which is ÎČX=1.0{\beta_{\rm X}}=1.0 ±\pm 0.1. The curvature of the SED constrains the dust reddening towards the burst to Av<0.5A_{\rm v}<0.5 mag

    The blue host galaxy of the red GRB 000418

    Full text link
    We report on multi-band ( UBVRIZJsKsUBVRIZJ_{\rm s}K_{\rm s}) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) the photometric redshift is consistent with the spectroscopic redshift, (iii) the colours of the host are inconsistent with an old stellar population, and (iv) the global extinction is constrained to be in the range AV=0.12- 0.61 mag. The derived global extinction agrees with the one reported for the afterglow ( AV = 0.4- 0.9 mag), suggesting a homogeneous distribution of the interstellar medium (ISM) in the host galaxy. These findings are supplemented by morphological information from Hubble Space Telescope (HST) imaging: the surface brightness profile is smooth, symmetric and compact with no underlying structures (like dust lanes, spiral arms or disks). A natural scenario which accounts of all the above results is a nuclear starburst that harbours a young population of stars from which the GRB originated

    Multi-wavelength afterglow observations of the high redshift GRB 050730

    Get PDF
    Context.GRB 050730 is a long duration high-redshift burst (z=3.967) that was discovered by Swift. The afterglow shows variability and was well monitored over a wide wavelength range. We present comprehensive temporal and spectral analysis of the afterglow of GRB 050730 including observations covering the wavelength range from the millimeter to X-rays. Aims.We use multi-wavelength afterglow data to understand the complex temporal and spectral decay properties of this high redshift burst. Methods.Five telescopes were used to study the decaying afterglow of GRB 050730 in the B, V, r', R, i', I, J and K photometric pass bands. A spectral energy distribution was constructed at 2.9 h post-burst in the B, V, R, I, J and K bands. X-ray data from the satellites Swift and XMM-Newton were used to study the afterglow evolution at higher energies. Results.The early afterglow shows variability at early times and the slope steepens at 0.1 days (8.6 ks) in the B, V, r', R, i', I, J and K passbands. The early afterglow light curve decayed with a powerlaw slope index α1=−0.60±0.07\alpha_1 = -0.60\pm0.07 and subsequently steepened to α2=−1.71±0.06\alpha_2 = -1.71\pm0.06 based on the R and I band data. A millimeter detection of the afterglow around 3 days after the burst shows an excess in comparison to theoretical predictions. The early X-ray light curve observed by Swift is complex and contains flares. At late times the X-ray light curve can be fit by a powerlaw decay with αx=−2.5±0.15\alpha_x = -2.5\pm0.15 which is steeper than the optical light curve. A spectral energy distribution (SED) was constructed at ~2.9 h after the burst. An electron energy index, p, of ~2.3 was calculated using the SED and the photon index from the X-ray afterglow spectra and implies that the synchrotron cooling frequency Îœc\nu_{\rm c} is above the X-ray band
    corecore