723 research outputs found

    Coexistence of antiferrodistortive and ferroelectric distortions at the PbTiO3_3 (001) surface

    Full text link
    The c(2×\times2) reconstruction of (001) PbTiO3_3 surfaces is studied by means of first principles calculations for paraelectric (non-polar) and ferroelectric ([001] polarized) films. Analysis of the atomic displacements in the near-surface region shows how the surface modifies the antiferrodistortive (AFD) instability and its interaction with ferroelectric (FE) distortions. The effect of the surface is found to be termination dependent. The AFD instability is suppressed at the TiO2_2 termination while it is strongly enhanced, relative to the bulk, at the PbO termination resulting in a c(2x2) surface reconstruction which is in excellent agreement with experiments. We find that, in contrast to bulk PbTiO3_3, in-plane ferroelectricity at the PbO termination does not suppress the AFD instability. The AFD and the in-plane FE distortions are instead concurrently enhanced at the PbO termination. This leads to a novel surface phase with coexisting FE and AFD distortions which is not found in PbTiO3_3 bulk

    Gebruik en effecten van NL‐Alert

    Get PDF

    Facilitated engraftment of human hematopoietic cells in severe combined immunodeficient mice following a single injection of ClÂČMDP liposomes

    Get PDF
    Transplantation of normal and malignant human hematopoietic cells into severe combined immunodeficient (SCID) mice allows for evaluation of long-term growth abilities of these cells and provides a preclinical model for therapeutic interventions. However, large numbers of cells are required for successful engraftment in preirradiated mice due to residual graft resistance, that may be mediated by cells from the mononuclear phagocytic system. Intravenous (i.v.) injection of liposomes containing dichloromethylene diphosphonate (Cl2MDP) may eliminate mouse macrophages in spleen and liver. In this study outgrowth of acute myeloid leukemia (AML) cells and umbilical cord blood (UCB) cells in SCID mice conditioned with a single i.v. injection of Cl2MDP liposomes in addition to sublethal total body irradiation (TBI) was compared to outgrowth of these cells in SCID mice that had received TBI alone. A two- to 10-fold increase in outgrowth of AML cells was observed in four cases of AML. Administration of 107 UCB cells reproducibly engrafted SCID mice that had been conditioned with Cl2MDP liposomes and TBI, whereas human cells were not detected in mice conditioned with TBI alone. As few as 2 x 104 purified CD34+ UCB cells engrafted in all mice treated with Cl2MDP liposomes. In SCID mice treated with macrophage depletion unexpected graft failures were not observed. Histological examination of the spleen showed that TBI and Cl2MDP liposomes i.v. resulted in a transient elimination of all macrophage subsets in the spleen, whereas TBI had a minor effect. Cl2MDP liposomes were easy to use and their application was not associated with appreciable side-effects. Cl2MDP liposome pretreatment in combination with TBI allows for reproducible outgrowth of high numbers of human hematopoietic cells in SCID mice

    White Rabbit Applications for FAIR Experiments

    Get PDF

    The STAP-study: The (cost) effectiveness of custom made orthotic insoles in the treatment for plantar fasciopathy in general practice and sports medicine: Design of a randomized controlled trial

    Get PDF
    Background: Plantar fasciopathy is a common cause of foot pain, accounting for 11 to 15 % of all foot symptoms requiring professional care in adults. Although many patients have complete resolution of symptoms within 12 months, many patients wish to reduce this period as much as possible. Orthotic devices are a frequently applied option of treatment in daily practice, despite a lack of evidence on the effectiveness. Therefore, the objective is to study the (cost)-effectiveness of custom made insoles by a podiatrist, compared to placebo insoles and usual care in patients with plantar fasciopathy in general practice and sports medicine clinics. Method/design: This study is a multi-center three-armed participant and assessor-blinded randomized controlled trial with 6-months follow-up. Patients with plantar fasciopathy, with a minimum duration of complaints of 2 weeks and aged between 18 and 65, who visit their general practitioner or sport physician are eligible for inclusion. A total of 185 patients will be randomized into three parallel groups. One group will receive usual care by the general practitioner or sports physician alone, one group will be referred to a podiatrist and will receive a custom made insole, and one group will be referred to a podiatrist and will receive a placebo insole. The primary outcome will be the change from baseline to 12 weeks follow-up in pain severity at rest and during activity on a 0-10 numerical rating scale (NRS). Secondary outcomes include foot function (according to the F

    A physicochemical perspective of aging from single-cell analysis of ph, macromolecular and organellar crowding in yeast

    Get PDF
    Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show that crowding is rather stable and that the stability of crowding is a stronger predictor for lifespan than the absolute crowding levels. Additionally, in aged cells we observe drastic changes in organellar volume, leading to crowding on the ”m scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively aged yeast cells. © 2020, eLife Sciences Publications Ltd. All rights reserved
    • 

    corecore