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Transplantation of normal and malignant human hematopoietic therapeutic interventions in vivo.13–15 Conditioning of SCID
cells into severe combined immunodeficient (SCID) mice mice using sublethal TBI and intravenous transplantation
allows for evaluation of long-term growth abilities of these cells allows for outgrowth of these cells in the SCID mouse boneand provides a preclinical model for therapeutic interventions.

marrow.1,16
However, large numbers of cells are required for successful

However, even following sublethal irradiation of SCID miceengraftment in preirradiated mice due to residual graft resist-
ance, that may be mediated by cells from the mononuclear large numbers of human hematopoietic cells are required for
phagocytic system. Intravenous (i.v.) injection of liposomes reproducible outgrowth and graft failures are frequently
containing dichloromethylene diphosphonate (Cl 2MDP) may observed.1–3,5–15 These problems restrict the practical possi-
eliminate mouse macrophages in spleen and liver. In this study

bilities for analysis of subsets of hematopoietic cells. As SCIDoutgrowth of acute myeloid leukemia (AML) cells and umbilical
mice are T and B cell-deficient, likely explanations for residualcord blood (UCB) cells in SCID mice conditioned with a single

i.v. injection of Cl 2MDP liposomes in addition to sublethal total graft resistance may be that transplanted human hematopo-
body irradiation (TBI) was compared to outgrowth of these cells ietic cells are cleared by either recipient mononuclear phago-
in SCID mice that had received TBI alone. A two- to 10-fold cytes or by recipient NK cells.17,18

increase in outgrowth of AML cells was observed in four cases
Macrophage depletion with the purpose of facilitatingof AML. Administration of 10 7 UCB cells reproducibly engrafted

engraftment of allogeneic and xenogeneic bone marrow graftsSCID mice that had been conditioned with Cl 2MDP liposomes
and TBI, whereas human cells were not detected in mice con- has been investigated before, using less specific means such
ditioned with TBI alone. As few as 2 × 104 purified CD34 + UCB as silica or carageenan. In irradiated mice, carrageenan and
cells engrafted in all mice treated with Cl 2MDP liposomes. In silica abrogated or weakened resistance to parental, allo-
SCID mice treated with macrophage depletion unexpected graft geneic and rat marrow grafts.19–22 However, both carrageenanfailures were not observed. Histological examination of the

and silica are highly toxic agents. Furthermore, they do notspleen showed that TBI and Cl 2MDP liposomes i.v. resulted in
completely eliminate macrophages and exert undesired effectsa transient elimination of all macrophage subsets in the spleen,

whereas TBI had a minor effect. Cl 2MDP liposomes were easy on nonphagocytic cells.19,21,23 These disadvantages clearly
to use and their application was not associated with appreci- compromise their applicability in bone marrow transplan-
able side-effects. Cl 2MDP liposome pretreatment in combi- tation in general and in the SCID mouse model in particular.nation with TBI allows for reproducible outgrowth of high

In vivo macrophage depletion has been achieved with lipo-numbers of human hematopoietic cells in SCID mice.
somes which contain clodronate (Cl2MDP). Such liposomesKeywords: SCID mice; macrophages; engraftment; acute myeloid

leukemia; umbilical cord blood are ingested by macrophages. After intracellular disruption of
the liposomes, clodronate effectively kills these cells.24 Which
population of macrophages is eliminated depends on the

Introduction route of administration of Cl2MDP liposomes.25 Intravenous
injection of the liposomes mainly eliminates phagocytic cells

Severe combined immunodeficient (SCID) mice may be used in liver and spleen, the candidate effector cells in graft resist-
as a model for the in vivo analysis of proliferation of human ance, because of their direct contact with circulating hemato-
hematopoietic cells.1–5 In hematological diseases such as poietic cells. Fraser et al26 showed that intravenous injection
acute myeloid leukemia,6,7 chronic myeloid leukemia,8 acute of Cl2MDP liposomes into unirradiated SCID mice prolonged
lymphoblastic leukemia9–11 and lymphoma12 SCID mice pro- the time needed for clearance of intravenously injected
vide a useful model for analysis of long-term growth and human peripheral blood lymphocytes. Similarly, application

of these liposomes to SCID mice with an established human
thymus/liver graft resulted in increased numbers of circulating
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plantations with or without additional Cl2MDP liposome ution on the day before transplantation of the hematopoietic

cells.treatment.

Tissue collectionsMaterials and methods

SCID mice were killed by CO2 inhalation followed by cervicalAcute myeloid leukemia cells and umbilical cord
dislocation in accordance with institutional animal researchblood cells
regulations. Cells or tissues from cohorts of mice transplanted
with the same graft were evaluated between days 22 and 47Peripheral blood (PB) samples were obtained following infor-
after transplantation using flow cytometry and cytology.31

med consent from four patients presenting with AML, diag-
Spleens of selected mice were extirpated and cryostat sectionsnosed according to the criteria of the French–American–
were prepared for pathologic examination.British Committee (FAB).27 AML cells and umbilical cord

blood samples (UCB) were isolated by Isopaque–Ficoll
centrifugation (1.077 g/cm2; Nycomed, Oslo, Norway) and

Flow cytometrythen cryopreserved.28 After thawing the viability of AML and
UCB cells as assessed by trypan blue exclusion was always

To determine the percentage of human hematopoietic cells in.70%.
the SCID mouse, bone marrow samples from mice that had
been transplanted with UCB grafts were incubated with
mouse monoclonal antibodies to human CD33, CD34, CD45Preparation of CD34+ umbilical cord blood fractions
and CD38. The initial leukemias and BM samples from mice
that had been transplanted with leukemic grafts were stained

UCB cells were incubated with an IgG2a antibody against or double-stained with the following mouse monoclonal anti-
CD34 (MoAb 561) which was noncovalently linked to a rat- bodies: CD34-FITC, CD34-PE, CD38-PE, CD34-FITC/IgG1-PE,
anti-mouse IgG2a-conjugated immunomagnetic beads CD34-FITC/CD38-PE, CD34-FITC/HLA-DR-PE, CD34-FITC/c-
(Dynabeads; Dynal, Oslo, Norway). CD34+ cells were eluted kit-PE, CD34-FITC/CD33-PE and finally CD45-FITC/CD33-PE.
from the beads using a polyclonal antibody preparation Mouse IgG1-FITC and mouse IgG1-PE conjugated antibodies
directed against the Fab fragment of the CD34 antibody and samples from nontransplanted SCID mice were used as
(Detachabead; Dynal).29

controls. c-kit-PE was purchased from Immunotech (Marseille,
France) all other antibodies from Becton Dickinson (San Jose,
CA, USA). The phenotypes of cells recovered from the SCID

Immunodeficient mice and transplantation of AML mouse bone marrow was compared to those of the grafts. Flu-
and umbilical cord blood (UCB) orescence was measured using a FACSCAN flow cytometer

and Lysis II software (Becton Dickinson, Immunocytometry
Female-specific pathogen-free CB17 scid/scid mice (5–9 Systems). Erythrocytes and dead cells were excluded from
weeks of age) were purchased (Harlan CPB, Austerlitz, The analysis by gating on forward and orthogonal light scatter.
Netherlands). Nonobese diabetic SCID (NOD/SCID), specifi- Cells recovered from SCID mouse bone marrow (BM) with
cally NOD/Lt-SCID/Sz mice (11 weeks of age), were obtained positive staining for two antibodies specific for human hema-
from Jackson Laboratories (Bar Harbour, MA, USA). Housing, topoietic cells were considered to be graft derived.32

total body irradiation (TBI) and transplant procedures have
been described.16 AML1 and AML2 engrafted in SCID mice
without support of human hematopoietic growth factors and Immunohistochemistry of spleen sections
AML3 and 4 were IL-3-dependent in SCID mice. The latter
SCID recipients received 60 mg of human IL-3 (Gist Brocades, Freshly obtained SCID mouse spleens were embedded in
Delft, The Netherlands) in 200 ml HBSS and 1% BSA (Sigma, Tissue-tek II (Miles Laboratories, Naperville, MI, USA), frozen
St Louis, MO, USA) intraperitoneally, 5 days a week as and stored at −70°C. Cryostat sections of 5 mm were prepared.
described.16 Mice transplanted with UCB did not receive Tissue fixation and immunoperoxidase staining of cryostat
growth factor treatment. sections were performed essentially as described by de Jong

et al.33 For fixation, a hexazotized pararosaniline solution
(0.5 ml, 4%) was added to NaNO2 (0.5 ml, 4%), diluted in

Liposome preparation 165 ml sterile water and applied to dry tissue sections (2 min)
followed by washing in PBS.33 MAb binding was detected
using a modified protocol involving NiSO4-supplementedCl2MDP liposomes were prepared as reported.30 Briefly,

75 mg phosphatidyl choline (Lipoid, Ludwigshafen, Germany) DAB and counterstaining of the nuclei with nuclear fast red.34

Sections were incubated with a panel of monoclonal anti-and 11 mg cholesterol (Sigma) were dissolved in chloroform
in a round bottom flask. After low vacuum rotary evaporation bodies to determine the effect of TBI and TBI with macro-

phage depletion by Cl2MDP on macrophage subsets in theat 37°C the lipids were dispersed by gentle rotation in 10 ml
PBS in which 2.5 mg clodronate (a gift of Boehringer spleen as representatives of phagocytic cells in direct contact

with the blood stream. The antibodies used were F4/8035,36Mannheim, Mannheim, Germany) was dissolved. The
resulting liposomes were washed twice at 100 000 g for 30 (identifying especially red pulp macrophages), ER-HR337,38

(major subset of red pulp macrophages) ER-TR939,40 (marginalmin to remove free, non-entrapped diphosphonate. The lipo-
somes were then resuspended in 4 ml phosphate-buffered zone macrophages), MOMA-141 (marginal metallophilic

macrophages), Monts-442 (marginal metallophilic and whitesaline (PBS) (liposome stock solution). SCID mice were
injected in a lateral tail vein with 0.2 ml liposome stock sol- pulp macrophages) and N418 (anti-CD11c)43,44 (dendritic
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1051Table 1 Growth of human AML cells in SCID mice: effect of pretreatment with Cl2MDP liposomes

AML1 AML1 AML2 AML3 AML4

Cell numbers transplanted (×106) 1 10 10 20 30
Conditioning MD + TBI TBI MD + TBI TBI MD + TBI TBI MD + TBI TBI MD + TBI TBI
% of AML cells in SCID BM 76 ± 18 17 ± 16 91 ± 5 41 ± 43 19 ± 18 7 ± 6 63 ± 17 25 ± 22 10 ± 13 1 ± 1
(mean ± s.d.)
AML tumor load (×106) (mean ± s.d.) 24 ± 8.5 2.0 ± 2.1 58 ± 12 23 ± 27 11 ± 11 3 ± 3 44 ± 10 8 ± 7 2 ± 1 0.3 ± 0.4
Graft failures/transplanted SCID mice 0/8 1/7 0/5 0/5 0/5 1/5 0/4 1/3 0/3 3/5

Irradiated groups of SCID mice (3.5 Gy) were transplanted with cells from four cases of AML with or without Cl2MDP pretreatment and
evaluated on the same day, between days 35 and 47. The tumor load was determined by counting the number of nucleated cells obtained
by flushing of two mouse femora, equivalent to 13.5% of the total mouse bone marrow50 as well as the percentages of human hematopoietic
cells determined by flow cytometry.
BM, bone marrow; s.d., standard deviation; MD, macrophage depletion by pretreatment with Cl2MDP liposomes; TBI, total body irradiation.

cells). To confirm results with other antibodies in addition formed in mice conditioned with TBI and macrophage
depletion. As few as 10 × 103 CD34+ UCB cells reproduciblyBM845 (red pulp macrophages), SER-446 (marginal metallo-

philic macrophages) and ER-BMDM147 (dendritic cells) were engrafted SCID mice (data not shown).
applied.

Extensive depletion of all spleen macrophage subsets
by the combination of Cl2MDP liposomes and TBI,Results
limited effect of TBI alone

Pretreatment with Cl2MDP liposomes enhances
engraftment of AML To evaluate the effect of Cl2MDP liposomes on SCID mouse

macrophages, which are possibly involved in scavenging of
transplanted human hematopoietic cells, cryostat spleen sec-We examined the effect of additional Cl2MDP liposome treat-

ment on the engraftment abilities of AML cells (from cases 1– tions were incubated with a panel of antibodies identifying
distinct mononuclear phagocyte subpopulations. TBI at4) in SCID mice treated with TBI and liposomes vs TBI alone

(controls). Liposome treatment in addition to TBI resulted in 3.5 Gy without administration of Cl2MDP liposomes had neg-
ligible effects on macrophage subpopulations in the spleen atan increase in the percentages of leukemic cells in the mouse

bone marrow (BM) by two- to 10-fold (Table 1). Leukemic day 4 after conditioning. Red pulp, white pulp and marginal
zone macrophage populations identified by immunopheno-tumor load per mouse increased three- to 12-fold (Table 1).

Graft failure was defined as less than 0.5% of AML cells in typic analysis had not changed significantly (Table 4). In con-
trast, dendritic cells (identified by the monoclonal antibodiesthe SCID mouse BM. Among the 25 mice transplanted with

AML cells following liposome treatment no graft failures were
observed, whereas six graft failures were seen in control

Table 2 Cell dose titration of AML2 in SCID mice with and with-recipients (P = 0.02, Fisher’s exact test) (Table 1). The
out Cl2MDP liposome pretreatment and in NOD/SCID miceimmunophenotypes of the leukemic cells recovered from the

SCID mice (as assessed by flow cytometry) were identical to
Conditioning SCID mice NOD/SCID micethose of the original grafts.

TBI
MD + TBI TBI

Comparison of growth of AML in SCID mice and in
Cell numbers transplanted (×106)NOD/SCID mice
30 77

93The outgrowth of graded cell doses of AML2 in SCID mice 10 81 19 45
pretreated with Cl2MDP liposomes was comparable with that 56 38 36
in NOD/SCID mice (Table 2). 69 66

3.3 83 3 34
7 1 34

32 3 33Macrophage depletion enhances outgrowth of UCB
31cells in SCID mice 1 1 0 7

4 0 2
Enhancement of engraftment of normal human hematopoietic 5 0 13

2cells was assessed in cell dose titration experiments of UCB
0.3 0.2 5cells. Transplantation of 10 × 106 UCB cells after TBI did not

4allow for reproducible engraftment (Table 3). By comparison
grafts of only 1 × 106 UCB cells engrafted in five of six SCID

NOD/SCID mice were transplanted in the same experiment as themice prepared with additional macrophage depletion. Thus an
SCID mice. All mice were evaluated on days 28 and 29. Data rep-approximately 10-fold reduction of the minimal cell numbers resent percentage of infiltration of human cells in the bone marrow

required for engraftment was seen as a consequence of of individual mice.
additional conditioning with Cl2MDP liposomes (Table 3). BM, bone marrow; MD, macrophage depletion by pretreatment with

Cl2MDP liposomes; TBI, total body irradiation.Cell dose titrations with CD34+ selected UCB cells were per-
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1052 Table 3 Cell dose titration of two umbilical cord blood samples N418 and ER-BMDM1) had disappeared from the red pulp
in SCID mice with and without Cl2MDP pretreatment and from the white pulp as a consequence of the sublethal

dose of TBI alone. Combined treatment with TBI and Cl2MDP
Conditioning UCB1 UCB2 liposomes depleted all identifiable macrophages from the

white pulp, the red pulp and the marginal zone (Table 4). At
MD + TBI TBI MD + TBI TBI day 45 after transplantation, all mononuclear phagocyte sub-

sets had reappeared except ER-TR9 positive marginal zone
Cell numbers transplanted (×106) macrophages. (Table 4).
30 71 75

56
10 24 1 11 0

6 0 18 0 Toxicity of Cl2MDP liposomes
11 0 12 1
6 0 6 0

The injection of 0.2 ml of Cl2MDP liposomes on the day3.3 9 0 3 0
before TBI and transplantation did not result in appreciable3 0 0 0

9 0 1 0 side-effects during the 45 day observation interval. Among the
0 56 mice conditioned with TBI alone six animals died before

1 1 1 evaluation (11%). In comparison six deaths were noted among
1 3

91 mice conditioned with TBI and additional macrophage11
depletion (8%).0

Irradiated SCID mice were transplanted with graded doses of
umbilical cord blood cells with or without macrophage depletion. Discussion
Data represent percentage of infiltration of human cells in the bone
marrow of individual mice. All mice were evaluated on days 41

Macrophage depletion by intravenous administration ofand 42.
ND, not done; UCB, umbilical cord blood graft; MD, macrophage Cl2MDP liposomes prior to sublethal TBI enhances the
depletion by pretreatment with Cl2MDP liposomes; TBI, total body engraftment of human hematopoietic cells in the SCID mouse
irradiation. bone marrow. This treatment is easy to apply and without sig-

nificant toxicity. Outgrowth of primary human AML increased
two- to 10-fold and engraftment of umbilical cord blood cells
was achieved with at least 10-fold smaller grafts (Tables 1 and
3). Probabilities of graft failure were significantly reduced
(Table 1). Thus, conditioning with TBI and Cl2MDP liposomes
in combination permits the establishment of relatively small
human hematopoietic cell grafts, eg 1 × 106 unseparated UCB

Table 4 Macrophage populations in the spleen of SCID mice after cells or 1 × 104 CD34-positive UCB cells and may facilitateTBI or TBI and macrophage depletion
the use of the SCID mouse model for the study of normal and
malignant human hematopoietic cells.Antibodies Control Day 4 Day 45

The observations suggest a functional role of murine phago-
cytic cells in the clearance of human hematopoietic cells thatTBI MD + TBI TBI MD + TBI
engraft SCID mouse bone marrow, similar to the delayed
clearance of human lymphocytes from the SCID mouse circu-F4/80 wp 2+ 4+ 0* 1+ 2+
lation as observed by Fraser et al.26 Other more indirectrp 4+ 4+ 0* 4+ 4+
immunological mechanisms cannot be excluded. One ofER-HR3 wp 1+ 1+ 0 1+ 2+

rp 3+ 3+ 0 3+ 3+ these mechanisms relates to the modulation of NK cell func-
ER-TR9 mz 2+ 1+ 0 0 0 tion by macrophages. Depletion of macrophages in the liver
MOMA-1 pwp 3+ 2+ 0 3+ 2+ (Kupffer cells) with Cl2MDP liposomes was associated with a

rp 2+ 3+ 0 1+ 1+ parallel decrease of the number of NK cells.48 Furthermore,Monts-4 wp 3+ 3+ 0 3+ 2+
Kupffer cell-conditioned media appeared to enhance NK cellrp 1+ 2+dim 0 0 1+
viability and function in vitro.48 In the study by Fraser et al26N418 wp 4+ 0 1+ 3+ 4+

mz 2+ 1+ 0 2+ 3+ complete depletion of macrophages in the red pulp of the
rp 1+ 0 0 1+ 1+ spleen was observed while many white pulp macrophages

remained. Our data show that white pulp macrophages are
To determine the effects of TBI and macrophage depletion by eliminated by Cl2MDP liposomes in sublethally irradiated
Cl2MDP liposomes on spleen macrophage populations SCID mice mice.
were evaluated on days 4 and 45 after TBI, and compared to NOD/SCID mice have multiple immunological defects. Inuntreated SCID mouse controls. The data obtained with these anti-

addition to B and T cell deficiency, NK function is absent andbodies were similar to data obtained with the use of independent
these mice may also have a macrophage maturation defect.49

antibodies BM-8, SER-4, and ER-BMDM1 (data not shown). Two or
three mice per group were evaluated. It has been shown that the tumor load in the spleen of
TBI, total body irradiation; MD, macrophage depletion by pretreat- SCID/NOD mice transplanted with human CEM T lympho-
ment with Cl2MDP liposomes; wp, white pulp; rp, red pulp; pwp, blasts was increased four-fold as compared to similarly trans-
peripheral white pulp; mz, marginal zone. The number of macro- planted SCID mice.49 Our results indicate that the outgrowthphages staining with a specific antibody within these anatomically

of AML and UCB grafts in irradiated SCID mice conditioneddefined regions were scored semiquantitatively: 4+, .50%
with additional Cl2MDP liposomes may be as effective as thatpositivity-confluent; 3+, 50%; 2+, 10–50%; 1+, scarce; *, only rem-

nants. in sublethally irradiated NOD/SCID mice.
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