336 research outputs found

    Sandwich organization of non-ionic surfactant liquid crystalline phases as induced by large inorganic K4Nb6O17 nanosheets

    No full text
    International audienceWhile keeping its lamellar liquid crystal phase, K4Nb6O17 nanosheets were used as a template to sandwich and stabilize an alkylpoly(ethylene oxide) nonionic surfactant-water system showing a monodomain (lamella) formation within the inorganic niobate sheets that appears to not be depend to the surfactant liquid crystalline state in solution but more its concentration

    Catchment geology preconditions spatio-temporal heterogeneity of ecosystem functioning in forested headwater streams

    Get PDF
    Catchment geology can affect water chemistry and groundwater influence, eventually affecting macroinvertebrate communities, but its effects on stream functions such as leaf decomposition have been scarcely investigated. To understand the effects of geology on leaf decomposition, we conducted leaf litter experiments in streams with volcanic and non-volcanic substrata using fine and coarse mesh bags. Volcanic spring-fed streams showed lower temperature in summer and higher temperature in winter (with temperature difference being more pronounced later in incubation) than non-volcanic streams. Macroinvertebrate communities captured inside coarse litter bags differed in the two stream types in both seasons, mainly because of shredder communities. Shredder abundance and biomass were higher in volcanic streams in both seasons. Geology-dependent temperature influenced microbe-mediated decomposition in both seasons, with total phosphorus as an additional driver in winter. Summer temperature was associated with an overall positive effect on the abundance of shredders, which affected invertebrate-mediated decomposition, but this was not evident in winter. Shredder activity in volcanic streams compensated for temperature-dependent microbial activity resulting in an overall balance in leaf decomposition. Spring-fed systems are valuable ecosystems, particularly for cold-adapted species. Thus, understanding these understudied ecosystems will significantly aid in their appropriate conservation

    Measuring Incineration Plants' Performance using Combined Data Envelopment Analysis, Goal Programming and Mixed Integer Linear Programming

    Get PDF
    Incineration plants produce heat and power from waste, reduce waste disposal to landfills, and discharge harmful emissions and bottom ash. The objective of the incineration plant is to maximize desirable outputs (heat and power) and minimize undesirable outputs (emissions and bottom ash). Therefore, studying the overall impact of incineration plants in a region so as to maximize the benefits and minimize the environmental impact is significant. Majority of prior works focus on plant specific decision making issues including performance analysis. This study proposes a hybrid Data Envelopment Analysis (DEA), Goal Programming (GP) and Mixed Integer Linear Programming (MILP) model to assess the performance of incineration plants, in a specific region, to enhance overall power production, consumption of waste and reduction of emissions. This model not only helps the plant operators to evaluate the effectiveness of incineration but also facilitates the policy makers to plan for overall waste management of the region through decision-making on adding and closing plants on the basis of their efficiency. Majority of prior studies on incineration plants emphasize on how to improve their performance on heat and power production and neglect the waste management aspects. Additionally, optimizing benefits and minimizing negative outputs through fixing targets in order to make decision on shutting down the suboptimal plants has not been modeled in prior research. This research combines both the aspects and addresses the overall performance enhancement of incineration plants within a region from both policy makers and plant operators’ perspectives. The proposed combined DEA, GP and MILP model enables to optimize incineration plants performance within a region by deriving efficiency of each plant and identifying plants to close down on the basis of their performance. The proposed model has been applied to a group of 22 incineration plants in the UK using secondary data in order to demonstrate the effectiveness of the model.

    Fish and macroinvertebrate assemblages reveal extensive degradation of the world's rivers

    Get PDF
    Rivers suffer from multiple stressors acting simultaneously on their biota, but the consequences are poorly quantified at the global scale. We evaluated the biological condition of rivers globally, including the largest proportion of countries from the Global South published to date. We gathered macroinvertebrate- and fish-based assessments from 72,275 and 37,676 sites, respectively, from 64 study regions across six continents and 45 nations. Because assessments were based on differing methods, different systems were consolidated into a 3-class system: Good, Impaired, or Severely Impaired, following common guidelines. The proportion of sites in each class by study area was calculated and each region was assigned a Köppen-Geiger climate type, Human Footprint score (addressing landscape alterations), Human Development Index (HDI) score (addressing social welfare), % rivers with good ambient water quality, % protected freshwater key biodiversity areas; and % of forest area net change rate. We found that 50% of macroinvertebrate sites and 42% of fish sites were in Good condition, whereas 21% and 29% were Severely Impaired, respectively. The poorest biological conditions occurred in Arid and Equatorial climates and the best conditions occurred in Snow climates. Severely Impaired conditions were associated (Pearson correlation coefficient) with higher HDI scores, poorer physico-chemical water quality, and lower proportions of protected freshwater areas. Good biological conditions were associated with good water quality and increased forested areas. It is essential to implement statutory bioassessment programs in Asian, African, and South American countries, and continue them in Oceania, Europe, and North America. There is a need to invest in assessments based on fish, as there is less information globally and fish were strong indicators of degradation. Our study highlights a need to increase the extent and number of protected river catchments, preserve and restore natural forested areas in the catchments, treat wastewater discharges, and improve river connectivity

    Lyso-GM2 Ganglioside: A Possible Biomarker of Tay-Sachs Disease and Sandhoff Disease

    Get PDF
    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease

    Capillary electrophoretic separation of nanoparticles

    Get PDF
    In the present work, CdSe nanocrystals (NCs) synthesized with a trioctylphosphine surface passivation layer were modified using amphiphilic molecules to form a surface bilayer capable of providing stable NCs aqueous solutions. Such modified nanocrystals were used as a test solute in order to analyze new electrophoretic phenomena, by applying a micellar plug as a separation tool for discriminating nanocrystals between micellar and micelle-free zones during electrophoresis. The distribution of NCs between both zones depended on the affinity of nanocrystals towards the micellar zone, and this relies on the kind of surface ligands attached to the NCs, as well as electrophoretic conditions applied. In this case, the NCs that migrated within a micellar zone can be focused using a preconcentration mechanism. By modifying electrophoretic conditions, NCs were forced to migrate outside the micellar zone in the form of a typical CZE peak. In this situation, a two-order difference in separation efficiencies, in terms of theoretical plates, was observed between focused NCs (N ~ 107) and a typical CZE peak for NCs (N ~ 105). By applying the amino-functionalized NCs the preconcentration of NCs, using a micellar plug, was examined, with the conclusion that preconcentration efficiency, in terms of the enhancement factor for peak height (SEFheight) can be, at least 20. The distribution effect was applied to separate CdSe/ZnS NCs encapsulated in silica, as well as surface-modified with DNA, which allows the estimation of the yield of conjugation of biologically active molecules to a particle surface

    A Novel Manganese Efflux System, YebN, Is Required for Virulence by Xanthomonas oryzae pv. oryzae

    Get PDF
    Manganese ions (Mn2+) play a crucial role in virulence and protection against oxidative stress in bacterial pathogens. Such pathogens appear to have evolved complex mechanisms for regulating Mn2+ uptake and efflux. Despite numerous studies on Mn2+ uptake, however, only one efflux system has been identified to date. Here, we report on a novel Mn2+ export system, YebN, in Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight. Compared with wild-type PXO99, the yebN mutant was highly sensitive to Mn2+ and accumulated high concentrations of intracellular manganese. In addition, we found that expression of yebN was positively regulated by Mn2+ and the Mn2+-dependent transcription regulator, MntR. Interestingly, the yebN mutant was more tolerant to methyl viologen and H2O2 in low Mn2+ medium than PXO99, but more sensitive in high Mn2+ medium, implying that YebN plays an important role in Mn2+ homoeostasis and detoxification of reactive oxygen species (ROS). Notably, deletion of yebN rendered Xoo sensitive to hypo-osmotic shock, suggesting that YebN may protect against such stress. That mutation of yebN substantially reduced the Xoo growth rate and lesion formation in rice implies that YebN could be involved in Xoo fitness in host. Although YebN has two DUF204 domains, it lacks homology to any known metal transporter. Hence, this is the first report of a novel metal export system that plays essential roles in hypo-osmotic and oxidative stress, and virulence. Our results lay the foundations for elucidating the complex and fascinating relationship between metal homeostasis and host-pathogen interactions

    Public health insurance and entry into self-employment

    Get PDF
    We estimate the impact of a differential treatment of paid employees versus self-employed workers in a public health insurance system on the entry rate into entrepreneurship. In Germany, the public health insurance system is mandatory for most paid employees, but not for the selfemployed, who usually buy private health insurance. Private health insurance contributions are relatively low for the young and healthy, and until 2013 also for males, but less attractive at the other ends of these dimensions and if membership in the public health insurance allows other family members to be covered by contribution-free family insurance. Therefore, the health insurance system can create incentives or disincentives to starting up a business depending on the family’s situation and health. We estimate a discrete time hazard rate model of entrepreneurial entry based on representative household panel data for Germany, which include personal health information, and we account for non- random sample selection. We estimate that an increase in the health insurance cost differential between self-employed workers and paid employees by 100 euro per month decreases the annual probability of entry into selfemployment by 0.38 percentage points, i.e. about a third of the average annual entry rate. The results show that the phenomenon of entrepreneurship lock, which an emerging literature describes for the system of employer provided health insurance in the USA, can also occur in a public health insurance system. Therefore, entrepreneurial activity should be taken into account when discussing potential health care reforms, not only in the USA and in Germany
    corecore