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Abstract Incineration plants produce heat and power from waste, reduce waste disposal to
landfills, and discharge harmful emissions and bottom ash. The objective of the incineration
plant is to maximize desirable outputs (heat and power) and minimize undesirable outputs
(emissions and bottom ash). Therefore, studying the overall impact of incineration plants in
a region so as to maximize the benefits and minimize the environmental impact is significant.
Majority of prior works focus on plant specific decisionmaking issues including performance
analysis. This study proposes a hybrid data envelopment analysis (DEA), goal programming
(GP) and mixed integer linear programming (MILP) model to assess the performance of
incineration plants, in a specific region, to enhance overall power production, consumption of
waste and reduction of emissions. This model not only helps the plant operators to evaluate
the effectiveness of incineration but also facilitates the policy makers to plan for overall
waste management of the region through decision-making on adding and closing plants
on the basis of their efficiency. Majority of prior studies on incineration plants emphasize
on how to improve their performance on heat and power production and neglect the waste
management aspects. Additionally, optimizing benefits and minimizing negative outputs
through fixing targets in order to make decision on shutting down the suboptimal plants has
not been modeled in prior research. This research combines both the aspects and addresses
the overall performance enhancement of incineration plants within a region from both policy
makers and plant operators’ perspectives. The proposed combinedDEA,GP andMILPmodel
enables to optimize incineration plants performance within a region by deriving efficiency
of each plant and identifying plants to close down on the basis of their performance. The
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proposed model has been applied to a group of 22 incineration plants in the UK using
secondary data in order to demonstrate the effectiveness of the model.

Keywords Incineration plants · DEA · Goal programming · MILP · Waste to energy

1 Introduction

Energy recovery from waste provide huge scope energy production as well as waste con-
sumption. Accordingly, this has been considered as one of the sustainability measures of
urban development. Although there is huge potential for producing energy from Municipal
Solid Waste (MSW), the UK has achieved only 18% incineration of MSW (Nixon et al.
2013b) till date. A recent study reveals that the UK needs 170 incineration plants in order
to achieve average of EU27 targets of percentage landfill reduction. Currently, the UK has
only 32 operating incinerators. Many of them are not as efficient as it should be (Nixon et al.
2013a). A total of 170 million tonnes of waste is produced from households and businesses
in England and Wales each year (Sambrook n.d.). There are multiple ways of handling and
treating municipal waste. These are: (a) land filling, (b) mass burn with energy/heat recov-
ery, (c) waste recycling and finally (d) waste composting (Daskalopoulos et al. 1998). This
waste reduction in the UK over the past years is partly ought to Directive 1999/31/EC which
imposed regulations and setting targets regarding biodegradable municipal waste (Environ-
mental Agency annual report and accounts 2013–2014). An alternative way of reducing
waste is by incinerating it. With municipal waste incineration, there are benefits (heat and
power generation and waste consumption) but also undesirable excipients (harmful gas emis-
sions, bottom ash etc.). However from bottom ash, ferrous and non-ferrous products can be
extracted, and the residue could be recycled to cement plant. Concentrating mostly on the
hazardous gas emissions from municipal waste incineration, several studies are presented
that provide information regarding concentrations of gas emissions. Municipal solid waste
incineration however has been reported that can help in greenhouse gas (GHG) emissions
reduction, under specific conditions (Papageorgiou et al. 2009). Except for the contribution
in GHG reduction, during incineration procedure for heat and power/generation, it has been
reported that polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH)
are emitted (Dyke et al. 2003). Life cycle analysis (LCA) is also another tool of assessing
environmental impact ofwastewater (Gallego et al. 2008) andMSWfacilities (Cherubini et al.
2009). Energy recovery frommunicipal waste through incineration is being used, besides the
UK, in EU countries (Pirotta et al. 2013) and non-EU countries as well (Tsai and Kuo 2010).

The performance of incineration plants depends onwaste quality and quantity,which keeps
varying over the time period in a specific location due to variability in waste generation and
seasonality. Additionally, waste to energy conversion technology and maintenance policies
of operating plants have considerable role to achieve optimum performance of incineration
plants. Therefore, it is desired that constant monitoring of incineration plants’ performance
within a specific region is undertaken in order to make decision on optimal performance
of incineration plants by shutting down of a few underperforming plants to achieve overall
goal of energy production, waste consumption, and emission reduction within a region.
This research addresses this issue through development of an innovative model that enables
measuringperformanceof groupof incinerationplants’within a region to optimize the outputs
in line with the a few targets/goals (e.g. waste consumption, heat and energy production, and
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emission reduction). Additionally, the model facilitates making decision on operating and
closing down plants in line with their performances.

Prior research on incineration covers issues related to technical, political, social and envi-
ronmental, and public health. Studies on performance measurement of incineration plants
consider incineration as only heat and power generation. Social and environmental aspects
of incineration are somewhat ignored. It’s worth considering both desirable and undesirable
outputs for measuring incineration pants’ performance so as to maximize desirable output
and minimize undesirable output. Overall performance depends on not only higher heat and
power production but also minimum environmental and social impacts. Prior studies on per-
formance analysis of incineration plants using DEA emphasize on improving less performing
units. The study by Chen et al. (2010) propose a DEA-based model for incineration plants’
performance measurement using waste consumption and energy production as outputs, and
come out with suggestions on improving inefficient units’ performance.Marques and Simões
(2009) compare efficiency of public and private solid waste management services and find no
difference. They consider waste amount and cost as criteria for the analysis. Chen and Chen
(2012) also consider cost andwaste amount as criteria for analysis and reveal that composting
and incineration contributes positively to achieve efficiency. Chen et al. (2012) use network
DEA to reveal that emission reduction and better resource allocation enhance overall per-
formance of incineration. Benito-Lopez et al. (2011) finds that strong regulatory measures
enhance efficiency of incineration. Chang and Yang (2011) derives that build operate trans-
fer contract is more effective to implement incineration projects than any other contracts.
Chen et al. (2014) reveals that effort in cost reduction, capacity utilization, ownership and
most appropriate location are the critical success factors for enhancing incineration plants’
performance. Although the above studies are significant and address specific issue related
to incineration plants’ performance, these fail to provide an integrated model that analyses
performance of both group of incineration plants and individual incineration plant so as to
achieve the targets/goals of waste management (e.g. waste consumption, heat and power
production, emission and waste reduction) of a specific region. Additionally, in order to
achieve the waste management targets the policymakers need to undertake various decisions
including shutting down the underperforming plants. Therefore, performance measurement
model must have desired capability to facilitate decision-makers with information. The cur-
rent knowledge on performance measurement of incineration plants is limited to suggesting
improvement measures on achieving various goals of incineration using DEA and GP. How-
ever, making decision on which plant to keep out of operations due to lower efficiency has not
been researched in an integrated way. This is important from policy makers’ perspectives so
as to keep the region cleaner and enhance overall productivity as the underperforming units
could be appropriately maintained during their out of operations period and brought back
to operations with full efficiency. This research bridges this knowledge gaps. The objective
of this study is to evaluate incineration plants’ performance in a region with the consider-
ation of both desirable and undesirable input and outputs, setting a few desired goals and
selecting and closing down non-performing inclination plants objectively and an integrated
way. This study uses data envelopment analysis (DEA) that is capable of benchmarking
decision making units (DMUs) using input and output criteria. The DEA model combines
with the Goal Programming (GP) to set targets for DMUs’ performance. The combined
DEA and GP model integrates with mixed integer linear programming (MILP) to facilitate
decision-making on shutting down of the suboptimal plants in order to optimize the overall
performance of incineration plants within a region.

Section 2 covers the literature review and identifies knowledge gaps. Section 3 elaborates
the research methodology that has been undertaken to develop the proposed performance
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measurement model. Section 4 demonstrates the application of the proposed performance
measurement model. The theoretical and managerial implications of the proposed model
have been discussed in Sects. 5 and 6 concludes the paper.

2 Literature review

Research on incineration addresses various issues such as how to improve energy recovery
performance and control pollution (Pai et al. 2008), how to select most appropriate location
for incineration plants (Alçada-Almeida et al. 2009; Eiselt and Marianov 2015) and derive
compensation package for effected people (Chang et al. 2002), and what extent the recycling
volume would change following the introduction of an incineration tax (Sahlin et al. 2007).
These facilitate analysing feasibility of incineration plants. Due to the variability of quality
and quantity of waste the output of incineration plants (energy and heat, quantities of ferrous
and non-ferrous metals and emissions) vary. Also, based on the main ingredients of the waste
incinerated, the energy conversion technology is selected (DiGregorio andZaccariello 2012).
Additionally, quality of waste governs the plant maintenance (predictive, preventive and shut
down) requirements. The following paragraphs demonstrate what has been contributed by
prior researches on incineration plant performance measurement and the knowledge gaps
that need still addressing.

Data envelopment analysis (DEA) is one of the most widely known techniques for mea-
suring units’ performance based on a set of inputs that are consumed in order to produce
outputs. In their work, Chen and Chen (2012) propose a DEA model to assess the efficiency
of Municipal Solid Waste (MSW) incineration services. Application of DEA technique has
been demonstrated in 29 MSW incineration plants in Portugal (Simões et al. 2010; Marques
and Simões 2009). The environmental performance of large MSW incineration plants has
been proposed by Chen et al. (2010). Using power capacity, operation cost, operation time
and power consumption as inputs and a plethora of undesirable outputs—such as hazardous
emissions, municipal waste suspended, bottom ash, and opacity, environmental efficiency of
MSW incineration plants was derived.

Besides assessingMSW incineration plants, DEA has been applied to measure the perfor-
mance of household refuse collection systems and refuse collection services (Benito-Lopez
et al. 2011). Super efficiency and cross efficiency DEA models has also been applied for
assessing environmental performance of MSW treatment facilities (Sarkis and Weinrach
2001). The efficiency of waste management systems (generation, sorting of recyclables and
collection) has been also examined with a DEA/Analytic Hierarchy Process (AHP) appli-
cation (Chen 2010). The efficiency of each has been extracted using a conventional input
oriented DEA model while weighting factors for each waste management system have been
extracted fromapanel of experts using theAHP.An aggregated efficiency index is constructed
from the two methodologies. In a similar context, managerial preferences are tackled with
ANP providing input to DEA for the selection of the best location of solid waste facilities in
Iran (Khadivi and Ghomi 2012). The productivity of waste management in Taiwan has been
also examined through a non-radial network DEA approach considering different stages and
layers (Huang et al. 2014). The packaging waste management system has been examined
with Benefit of Doubt (BoD), a DEA like methodology in Belgium; the cost efficiency of
35 Belgian municipal waste joint ventures in 2010 is assessed (De Jaeger and Rogge 2014).
Quality of 293 Belgian municipality solid waste collection and processing facilities has been
examined with a shared DEA model; the waste cost is treated as a shared input among
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treatment efforts of multiple municipal solid waste fractions (Rogge and De Jaeger 2012,
2013).The water treatment is closely related with waste management while reuse of wastew-
ater is achieved through plants. The efficiency of 338 plants has been investigated based on
cost factors (inputs) and reused water quality (output) in Valencia, Spain (Hernández-Sancho
and Sala-Garrido 2009).

In their work Costi et al. (2004) proposed a Mixed Integer Non-Linear Programming
(MINLP) model for the selection of plant waste treatment type and its capacity. A mixed
integer linear programming (MILP) model that examines cost minimization has been pro-
posed for landfill location (Fiorucci et al. 2003). Similar mathematical models have been used
as decision support system (DSS) for selecting optimalwaste treatment facility (Fiorucci et al.
2003; Chang and Chang 1998). Models for treatment type, flows and technology have been
proposed using multi-objective programming analysis (Galante et al. 2010; Alumur and Kara
2007). Applications of Goal Programming (GP) in solid waste management (SWM) have
been also suggested in the relevant literature for assessing the environmental impact while
minimizing operational costs (Galante et al. 2010). The transportation of hazardous waste
and location of disposal and recycling centers is important as well to environment and to total
population. Samanlioglu (2013) proposed aGP formulation for location-routing of hazardous
waste under economic (cost minimization) and risk (total transportation risk related to the
population, total risk for the population around treatment and disposal centers) objectives.

The models that have been proposed for measuring incineration plant performance are
presented in Table 1. In most of the models demonstrated, Scale Efficiency has been pro-
posed as ameasure for performance. The inputs and outputs that are used provide information
regarding the operational efficiency (production) leaving out information regarding the qual-
ity of each incineration (emissions, opinion of local population towards these plants etc.).
This is partially ought to lack of availability of data, as the available data that are used in
most of the studies are derived either from national census or from environmental agencies
publishing reviews of the performance of each incinerator.

As stated above, majority of the DEA models help assess the operational performance
of incineration plants. DEA technique also measures efficiency of incineration plants based
on inputs and outputs through benchmarking. An efficient unit would be the one that uses
fewer resources to produce energy with fewer emissions. While examining the performance
of an energy production unit, additional constraints could be introduced—such as social
constraints, or analyzing the demand and supply of each plant. Moreover, as incineration
plants contribute to overall power and heat requirements from renewable sources, and also
reduces the environmental impact by consuming waste (reducing the landfill) and enhances
harmful emissions, one has to study the overall impact of incineration plants in a region so
as to maximize the benefits and minimize the emission impact. Chen et al. (2012) propose a
network DEA model for incineration plants’ efficiency measurement from waste treatment
to electricity generation. A directional distance function is used to construct a modified DEA
model in accordancewith the production characteristics of incineration plants, while allowing
for differentiation between desirable (waste disposal and energy production) and undesirable
outputs (bottom ashes and pollutants). This helps both policymakers and plant operators to
enhance overall performance of incineration in a region. However, as the model doesn’t set a
goals/targets for desirable and undesirable outputs as per the policymakers’ and plant owners’
objectives, the outcomes of themodelmay not very realistic and decision-making on the basis
of proposed model’s results may not be accurate. Ideally incineration plants consume huge
amount of MSW, produce maximum power and heat, and discharge as little emission as
possible. However, in reality due to varied quantity and quality of waste within a specific
region one has to optimize the outputs through setting up the targets/goals. Additionally,
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there must be provision of withdrawing some facilities if their undesirable outputs are beyond
certain limit. This would warrant policy makers and plant owners to run the units optimally
and shutting down the suboptimal units for undertaking maintenance and other desirable
activities to bring them in full operations in the due course. To authors’ knowledge there is
nowork that hasmodeled the performance of incineration plants in a region for power and heat
production, reduction of waste and harmful emissions with specific targets for both desirable
and undesirable outputs. This study proposes a hybrid data envelopment analysis (DEA),
Goal Programming (GP) and mixed integer linear programming (MILP) model to assess the
performance of incineration plants in a specific region to enhance overall power production,
reduction of waste and emissions. This model provides a flexible framework that utilizes the
strengths of DEA and GP. Additionally, it enables to make decision on shutting down low
performer plants that could be undergone desired maintenance to improve their performance
and incorporated into the system again. The proposed model in one hand facilitates policy
makers to enhance overall performance of incineration plants within a specific region to
achieve desired targets and on the other hand helps individual plant operators to address their
issues and challenges related to input and output variables in order to achieve the desired
throughput (energyproduction andwaste handling) andundesirable pollutants (reducebottom
ash and emissions)

3 Methodology

This research uses secondary data from literature to formulate the proposed performancemea-
surementmodel. Information of 22 incineration plants in theUKhas been used to demonstrate
the effectiveness of themodel. The following paragraphs formulate the proposed performance
measurement model.

3.1 Model formulation

Incineration plants’ performance assessment needs consideration of multiple criteria. DEA
derives efficiency scores of decision making units (DMUs) based on pre-determined inputs
and outputs. Integrating GP with DEA allows to set goals for multiple objectives (e.g. Opera-
tional, economic, environmental, social performance) (Zografidou et al. 2016) In this paper, a
hybrid GP/DEAmodel is presented to measure incineration plants’ performance. The model
integrates binary variables (0, 1) in order to segregate plants that are performing in line with
the desired environmental and operational targets. The proposedmodel is based on an existing
GP/DEA model (Izadikhah et al. 2014) and extends its features by adding binary variables
and various scenarios to form a mixed integer linear programming (MILP) model.

Data envelopment analysis (DEA) helps deriving efficiencies of DMUs by comparing the
inputs and outputs of each unit against each other. Goal Programming helps to set goals for
each criterion and derives decision variables throughminimizing the deviations for each goal.
Combining DEA and GP into a single framework, helps derive efficiency score of each unit
within the desired goals. The use of binary variables facilitates selection of efficient units on
the basis of the achievement of the desired goals.

The proposed model has been formulated following a few steps. Figure 1 depicts the flow
chart of proposed performance measurement model. Firstly, based on DEA formulation, the
units (incineration plants) are identified and the inputs/outputs of each unit are derived from
the available data. The GP formulation is used to model operational goals, environmental
targets, and capital constraints. The combined DEA and GP model helps derive efficiency
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Fig. 1 Flow chart showing the combined DEA, GP, and MILP model for incineration plant performance
measurement

of each unit under assessment. In order to identify the plants that need to be closed on the
basis of their overall performance in relation to the overall targets, binary variables (0, 1) are
introduced within the combined GP/DEAmodel along with the linearisation constraints. The
overall outcome is a MILP model, which identifies the inefficient plants that must be closed
in order to keep the overall targets (e.g. MSW consumption, energy and heat production,
emissions reduction) of specific zone through analyzing various scenarios. The following
paragraphs explained the proposed model mathematically.

3.2 Notation

See Table 2.

Table 2 Indices, variables and parameters of the proposed model

Index

j � 1, . . . , n DMU (incineration plants)

r � 1, . . . , s Outputs

i � 1, . . . ,m Inputs

ε � 1, . . . , E Scenarios

Variables

λ j Peers of incineration (DMU) j

λ̂ j Auxiliary variable for linearization of bilinear term λ j · ξ j

ξ j 1 if incineration plant is selected, 0 otherwise

η Auxiliary binary variable for disjunction of constraints

d−
r Under achievement of target r

d+r Over achievement of target r

Parameters

yundr, j Undesirable output r of DMU j

xi, j Input i of DMU j

Gund
r Goal for undesirable output r

PE j Power exported of incineration plant (DMU) j(KWh)

AVj Annual availability of incineration plant (DMU) j (%)
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Table 3 Input (a) and output (b) oriented DEA models

min θ

s.t.
n∑

j�1

xi j · λ j ≤ xio · θ, i � 1, . . . ,m

n∑

j�1

yr j · λ j ≥ yro, r � 1, . . . , s

λ j ≥ 0, j � 1, . . . , n

θ f ree

maxϕ

s.t.
n∑

j�1

xi j · λ j ≤ xio i � 1, . . . , n

n∑

j�1

yr j · λ j ≥ yro · ϕ, r � 1, . . . , s

λ j ≥ 0, j � 1, . . . , n

ϕ f ree

(a) (b)

3.3 Model description

Economic systems entail production processes; assuming that i � 1, . . . ,m inputs are con-
sumed to produce r � 1, . . . , s outputs, then the following DEA models are used in order to
assess the efficiency of the entities that are examined (DMUs). Focusing only on envelopment
models, the following Linear Programming (LP) formulations are input or output oriented
DEA models (Charnes et al. 1981, 1984).

Models presented in Table 3 (a) and (b) are the conventional DEAmodels. The outputs are
treated all as desirable. However, every economic entity may produce undesirable outputs by
consuming inputs. In the present study, incineration plants produce, among desirable outputs,
undesirable outputs as well. During the incineration procedure, municipal waste is consumed
producing power but also harmful gas emissions. The DEAmodel that assesses a production
procedure based on desirable and undesirable outputs is presented with the following LP
formulation (Sueyoshi and Goto 2011a, b; Sueyoshi et al. 2010).

max β

s.t.
n∑

j�1

λ j · x j,i ≤ xo, j , i � 1, . . . ,m

n∑

j�1

λ j · y j,r1 ≥ ydeso,r1 · (1 + β) , r1 � 1, . . . , s1

n∑

j�1

λ j · y j,r2 � yundeso,r2 · (1 − β) , r2 � 1, . . . , s2

λ j ≥ 0, j � 1, . . . , n

β f ree (1)

In DEAmodel (1), a DMU is considered efficient if β∗ � 0. However, DEAmodels assess
the production process based on a number of given datasets for inputs and outputs.

123



Ann Oper Res

Real world problems have more than one objective, based on which criteria are optimized
(maximized or minimized). Goal Programming (GP) models are generally used in order to
handle such problems. A typical GP model is formulated as follows:

minw1 · δ− + w2 · δ+ + w3 · (
δ− + δ+

)

s.t.

K∑

k�1

ak · xk+δ− − δ+ � G

K∑

k�1

ak · xk ≤ b

xk ≥ 0, ∀k (2)

In formulation (2), slack variables are minimized in the objective function according to
the direction of each goal. Extending model (2), then the following model (3) is formulated
with the integration of DEA technique (Izadikhah et al. 2014).

min
s1∑

r�1

δ−
r +

s2∑

r�1

δ+r +
s3∑

r�1

(
δ−
r + δ+r

)

s.t.
n∑

j�1

λ j · yr j+δ− − δ+ � G1
r , r � 1, . . . , s1

n∑

j�1

λ j · yr j+δ− − δ+ � G2
r , r � 1, . . . , s2

n∑

j�1

λ j · yr j+δ− − δ+ � G3
r , r � 1, . . . , s3

n∑

j�1

λ j · xi j ≤ xio, i � 1, . . . ,m

λ j ≥ 0, j � 1, . . . , n (3)

The methodology used in this paper, is a hybrid DEA/GP model. With this combina-
tion, the inputs and outputs are utilized, while each combination of incineration plants is
examined with the GP approach. The resulting model is a MILP mathematical program-
ming model and is presented in formulation (4). In this model, the aim is to minimize the
slack variables that overestimate the goals of undesirable outputs which concern harmful
gas emissions. The first set of constraints is introduced to model the goals for undesir-
able outputs; the second set of constraints, concern the inputs. In both cases, a binary
variable is introduced in the model, examining only those DMUs which satisfy constraints
third or fourth set of constraints. Binary variable η is introduced to model the disjunction∑n

j�1 PE j · ξ j ≥ PEU ∨ ∑n
j�1 AVj · ξ j ≥ AVU (either power exported or annual avail-

ability of each incineration plant should be over a specific threshold). Parameters M1 and
M2 are sufficient upper bounds of each constraint. With disjunctive formulation, incinera-
tion plants are selected based on the thresholds set to power exported or annual availability.
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Fig. 2 Scatterplot and boxplot for power exported and annual availability

The power generation of each incineration is more or less steady; however the waste incin-
erated may vary in type, consistency and power generation value. Thus, the aim is to set
constraints on power generation and annual availability. Annual availability could have not
been introduced in classical DEA models, as is not part of the production process, however,
when considering a centralized model with decisions that concern the selection of a plant,
similar to the one proposed in this paper, then this type of information regarding exogenous
operations of each plant can be utilized.

As it can be seen from Fig. 2, parameters for power exported and annual availability have
very low correlation (p � 0.10); thus, DMUs should be selected on one of the two parameters
as the more the annual availability does not imply more power exported to the grid.

Fifth constraint guarantees Variable Returns to Scale (VRS) technology for the selected
DMUs while sixth and seventh constraints are introduced to bound the number of selected
DMUs in the range of [μ, K ].

min
s∑

r�1

d+r
Gund

r

s.t.
n∑

j�1

λ j · ξ j ·yundr, j + d−
r − d+r � Gund

r , r � 1, . . . , s

n∑

j�1

λ j · ξ j ·xi, j ≤ xi, j0 , i � 1, . . . ,m

n∑

j�1

PE j · ξ j ≥ PEU + M1 · η

n∑

j�1

AVj · ξ j ≥ AVU + M2 · (1 − η)

n∑

j�1

λ j · ξ j � 1
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n∑

j�1

ξ j ≤ K

n∑

j�1

ξ j ≥ μ

ξ j ∈ {0, 1} ,

η ∈ {0, 1} ,

λ j ≥ 0, j � 1, . . . , n (4)

Due to the existence of bilinear terms (product of binary and continuous variable), model
(3) is a Mixed Integer Non – Linear Programming (MINLP) model. In order to avoid any
local optima (due to existence of a nonlinear model), the following triplets of constraints
(5)–(7) are introduced to linearize bilinear term (λ · ξ ).

λ̂ j − Mj · ξ j ≤ 0, j � 1, . . . , n (5)

λ̂ j − λ j ≤ 0, j � 1, . . . , n (6)

λ j − λ̂ j + Mj · ξ j ≤ Mj , j � 1, .., n (7)

In linearization constraints (4), (6) the upper bound of λ value (Mj ) is 1.
Model (3) is formulated, based on (4)–(6) as follows:

min
s∑

r�1

d+r
Gund

r

s.t.
n∑

j�1

λ̂ j ·yundr, j + d−
r − d+r � Gund

r , r � 1, . . . , s

n∑

j�1

λ̂ j ·xi, j ≤ xi, j0 , i � 1, . . . ,m

n∑

j�1

PE j · ξ j ≥ PEU + M1 · η

n∑

j�1

AVj · ξ j ≥ AVU + M2 · (1 − η)

n∑

j�1

λ̂ j � 1

n∑

j�1

ξ j ≤ K

n∑

j�1

ξ j ≥ μ

λ̂ j − ξ j ≤ 0, j � 1, . . . , n
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λ̂ j − λ j ≤ 0, j � 1, . . . , n

λ j − λ̂ j + ξ j ≤ 1, j � 1, .., n

η, ξ j ∈ {0, 1} , j � 1, .., n

λ j , λ̂ j ≥ 0, j � 1, . . . , n (8)

3.4 Introducing scenarios

In order to evaluate how the system will behave if less facilities will be selected, then dif-
ferent scenarios are introduced regarding the number of total facilities to be selected. Thus,
scenarios for upper bounds are introduced, leading to formulation (9). With the introduction
of scenarios, we are in position to assess the optimal number of facilities that will be selected
based on the results. Even if, waste incineration is considered as a safe choice for energy
and heat production, there is a lot of dispute especially environmental agencies about the
continuation of the operations of several incineration plants. This event is taken into account
in this paper in the form of scenarios. In this case, 10 scenarios are introduced for the maxi-
mum number of selected DMUs; namely K 1 � 22, K 2 � 21, . . ., K 9 � 14, K 10 � 13. The
minimum number of incineration plants (μ) is defined as 13. Thus, for ε � 10 constraints∑n

j�1 ξ j ≤ K ε and
∑n

j�1 ξ j ≥ μ lead to
∑n

j�1 ξ j � 13.

f or ε � 1, . . . , E

min
s∑

r�1

d+r
Gund

r

s.t.
n∑

j�1

λ̂ j ·yundr, j + d−
r − d+r � Gund

r , r � 1, . . . , s

n∑

j�1

λ̂ j ·xi, j ≤ xi, j0 , i � 1, . . . ,m

n∑

j�1

PE j · ξ j ≥ PEU + M1 · η

n∑

j�1

AVj · ξ j ≥ AVU + M2 · (1 − η)

n∑

j�1

λ̂ j � 1

n∑

j�1

ξ j ≤ K ε

n∑

j�1

ξ j ≥ μ

λ̂ j − ξ j ≤ 0, j � 1, . . . , n

λ̂ j − λ j ≤ 0, j � 1, . . . , n
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λ j − λ̂ j + ξ j ≤ 1, j � 1, .., n

η, ξ j ∈ {0, 1} , j � 1, .., n

λ j , λ̂ j ≥ 0, j � 1, . . . , n

end f or (9)

3.5 Extending the model

The proposed combined DEA, GP and MILP model provides is a flexible framework for
identifying efficient incineration plants through performance measurement. However, in the
current state, the model, apart from environmental (reduction of emissions) and operational
(energy production, annual availability constraints), does not take into account additional
aspects (e.g. social perspectives). Also, the proposed model can incorporate transportation
constraints to explicitly examine in detail the supply of MSW and demand for power to grid.

Although incineration plant produces power and heat fromMSW, it also discharges unde-
sirable emissions that cause inconvenience to the citizens as incineration plants are located in
habilitated areas. Assuming that PSj is the level of satisfaction of citizens about incineration
j , and Gsoc is a goal for overall of incineration plants, then the following goal constraint is
introduced to themodel. In constraint (10)d−

soc and d
+
soc model the under and over achievement

of goal respectively.
n∑

j�1

ξ j · PSj + d−
soc − d+soc � Gsoc (10)

Also, the procedure by which waste is transported to each incineration plant from landfills
could be incorporated in the present model. If supply quantities produced in landfill f ( f �
1, .., F) are denotedwith S f and the transported quantities from landfill f to incineration plant
j are denotedwith Q f, j , then constraint (11) implies that the transported quantities should not
exceed the ones that are available. Constraint (12) guarantees that the transported quantities
from landfill f to incineration plant j must exceed the demand for MSW of incineration
plant j . Quantities transported from landfill f to incineration plant j are subjected to upper
and lower bound constraints regarding the capacity that can be transported (13), (14). Binary
variable X f, j takes value 1 if the corresponding connection between landfill f to incineration
plant j exists and 0 otherwise. Finally constraint (15) suggests that the connection between
landfill f to incineration plant j exists if – f the corresponding incineration plant j has been
selected.

n∑

j�1

Q f, j ≤ S f , f � 1, .., F (11)

F∑

f �1

Q f, j ≥ Dj , j � 1, .., n (12)

Q f, j ≤ QU
f, j · X f, j , f � 1, .., F, j � 1, .., n (13)

Q f, j ≥ QL
f, j · X f, j , f � 1, .., F, j � 1, .., n (14)

X f, j ≤ ξ j , f � 1, .., F, j � 1, .., n (15)
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In case of high demand, constraint (16) is introduced in order to prevent the model of
being infeasible. Also, the following term is introduced in the objective function to penalize

any uncovered demand
(∑n

j�1 c
M · 
 j

)
.

F∑

f �1

Q f, j + 
 j � Dj , j � 1, .., n (16)

From the variables introduced above it stands that Q f, j ,
 j ≥ 0 and X f, j ∈ {0, 1}.
The addition of transportation model in the proposed DEA/GP model, introduces also

another dimension, that of cost. The cost of the model is now computed based on the trans-
ported quantities and the connections that are created between landfill f to incineration plant
j .

F∑

f �1

(
cVf, j · Q f, j + cFf, j · X f, j

)
+ costd−

j − costd+j � Gcost
j , j � 1, .., n (17)

As the model examines the incineration plants from a holistic centralized perspective, the
goal for cost that is considered is set as a means of reducing transportation cost. This cost is
incorporated in the price of power and heat production to the grid. Thus, setting individual
targets for each incineration plant, the selected incineration plant will not only be selected
on the basis of reducing resources used and emissions but also reducing the cost.

The resulting model is based on (9) with constraints (10)–(15), (17).

f or ε � 1, . . . , E

min
s∑

r�1

d+r
Gund

r
+

n∑

j�1

costd+j
Gcost

j

+
d−
soc

Gsoc

s.t.
n∑

j�1

λ̂ j ·yundr, j + d−
r − d+r � Gund

r , r � 1, . . . , s

F∑

f �1

(
cVf, j · Q f, j + cFf, j · X f, j

)
+ costd−

j − costd+j � Gcost
j , j � 1, .., n

n∑

j�1

ξ j · PSj + d−
soc − d+soc � Gsoc

n∑

j�1

λ̂ j ·xi, j ≤ xi, j0 , i � 1, . . . ,m

n∑

j�1

PE j · ξ j ≥ PEU + M1 · η

n∑

j�1

AVj · ξ j ≥ AVU + M2 · (1 − η)

n∑

j�1

λ̂ j � 1
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n∑

j�1

ξ j ≤ K ε

n∑

j�1

ξ j ≥ μ

n∑

j�1

Q f, j ≤ S f , f � 1, .., F

F∑

f �1

Q f, j ≥ Dj , j � 1, .., n

Q f, j ≤ QU
f, j · X f, j , f � 1, .., F, j � 1, .., n

Q f, j ≥ QL
f, j · X f, j , f � 1, .., F, j � 1, .., n

X f, j ≤ ξ j , f � 1, .., F, j � 1, .., n

λ̂ j − ξ j ≤ 0, j � 1, . . . , n

λ̂ j − λ j ≤ 0, j � 1, . . . , n

λ j − λ̂ j + ξ j ≤ 1, j � 1, .., n

η, ξ j ∈ {0, 1} , j � 1, .., n

λ j , λ̂ j ≥ 0, j � 1, . . . , n

end f or (18)

In (18), the objective function minimizes the deviational variables of three aspects: envi-
ronmental (undesirable outputs, emissions), financial (cost) and social (citizen’s satisfaction).
In the presence of preference towards these three aspects, weights can be assigned to each
aspect. The objective function becomes as follows:

minwenv ·
s∑

r�1

d+r
Gund

r
+ w f in ·

n∑

j�1

costd+j
Gcost

j

+ wsoc · d−
soc

Gsoc
(19)

In the formulation (19), wenv , w f in and wsoc are the weights towards environmental,
financial and social aspects and it stands that wenv + w f in + wsoc � 1. The resulting model
is a 0 – 1 Weighted DEA/GP model.

4 Application

4.1 Data description

The study uses information on capacity and harmful emissions of 22 incineration plants in
the UK from Department for Environment, Food & Rural Affairs (DEFRA). The thresholds
and goals were set based on the basis of regulatory framework; only recent documents
(2010–2013) were used for each incineration plant.

The 22 incineration plants that are considered in this analysis are depicted through (INC1
– INC22); data on operational and environmental aspects of each incineration plant were
gathered from environmental agencies (“Environment Agency annual report and accounts
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Table 4 Inputs and undesirable outputs for each incineration plant

Incineration
plant j

Inputs (xi, j ) Undesirable outputs (yundr, j )

Waste
capacity
(t/a)

Power
capacity
(MWh)

PM10
(mg/m3)

HCl
(mg/m3)

CO
(mg/m3)

SO2
(mg/m3)

NOx
(mg/m3)

INC1 580,000 34.5 6 5 19 6 59

INC2 140,000 10 3.383333 8.733333 6.725 13.45833 155.6667

INC3 102,000 8 1.45 5.66 18.6 13.9 174

INC4 315,000 17.7 2.04 3.68 29.67 23.79 255.2

INC5 105,000 7.4 3 5 9 8 168

INC6 750,000 40 2.8 2.6 44.8 8.4 206.4

INC7 210,000 14 2.385 13.355 21.95 7.575 200.5

INC8 242,000 19.5 20 30 100 200 400

INC9 210,000 14 1.02 6.47 10.1 20.9 211

INC10 52,000 40 2.01 2.44 4.89 3.78 83.72

INC11 210,000 14.2 2.5 6.5 13 18.5 152

INC12 350,000 27 30 60 100 200 400

INC13 110,000 8 1.5 4 17.5 9 177.5

INC14 56,000 3 2.4 2.4 2.1 3 167.8

INC15 150,000 9.5 1.7 4.5666 9.4333 8.5 168.4167

INC16 225,000 19 0.653 7.216 5.896 17.117 143.662

INC17 260,000 20 300 10 100 200 400

INC18 65,000 7 0 44.53333 100 155.7417 211.9583

INC19 65,000 1.7 45 60 100 200 400

INC20 420,000 35 0.25 0.65 0.18 0.28 0.88

INC21 375,000 29 30 60 100 200 400

INC22 29,000 7 0.2317 0.0108 1.063333 5.284167 245.0067

2013 to 2014 - Publications - GOV.UK”) and relevant literature (Nixon et al. 2013a, b).
Although there are 32 operating incineration plants in the UK, the study is limited to 22
plants due to data unavailability. In Table 4, inputs and outputs of the DEA based perfor-
mance measurement model are presented. As it can be seen, inputs of each incineration plant
(DMU) are selected, in order to grasp the potential management of waste handled and power
generated. On the contrary, the present model considers only undesirable outputs (harmful
gas emissions) derived from the incineration procedure. Data for Power Exported andAnnual
availability, which are used as constraints in the model, are presented in Table 5. Finally, as
the presented model is a hybrid GP/DEA model, the goals for undesirable outputs are pre-
sented in Tables 6 and 7, thresholds for power exported and annual availability are presented.

4.2 Results

In this section, the results of the analysis are presented, derived by model (9) where the
variables for each target are derived for each scenario of total facilities to be installed. The
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Table 5 Data for coefficient of power exported and annual availability constraints

Incineration plant j Power exported
(MWh) (PE j )

Annual availability
(%) (AVj )

INC1 22 0.73

INC2 6.6 0.78

INC3 49.01 0.94

INC4 12.57 0.848333333

INC5 6.5 0.9428

INC6 40 0.85

INC7 14.64283099 0.935502283

INC8 16.5 0.394292237

INC9 12.71908233 0.955365297

INC10 0.461517135 0.4794

INC11 12 0.8759

INC12 25 1

INC13 5.526619499 0.91

INC14 2.32 0.9

INC15 8.9 0.89

INC16 14.60931615 0.863869863

INC17 60.296 0.87

INC18 5 0.86

INC19 0.756322978 0.737642694

INC20 8.5 0.934417808

INC21 29.2 0.575829528

INC22 16.771 0.89760274

Table 6 Targets for undesirable
outputs (Gund

r ) Undesirable output mg/m3

PM10 15

HCl 10

CO 25

SO2 200

NOx 100

Table 7 Thresholds for exported
power and annual availability

Threshold

Exported power (PEU ) 300 (MWh)

Availability (AVU ) 75 (%)

formulation and solution of the model has been done using GAMS software (McCarl 2002)
and using CPLEX as MILP solver (Rosenthal 2004). In Table 8, optimal decision levels for
various scenarios are demonstrated. As it can be seen in Table 8, the first row provides the
results of model (3). However, the optimal decisions for over and under achievement of each
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Table 8 Results for each scenario
of under and over achieving of
variables of slack variables
(d∗,−
r , d∗,+

r )

ε K d∗,−
r d∗,+

r

PM10 HCl CO SO2 NOx

1 22 14.7683 9.9892 23.93667 194.7158 145.0067

2 21 14.7683 9.9892 23.93667 194.7158 145.0067

3 20 14.7683 9.9892 23.93667 194.7158 145.0067

4 19 14.7683 9.9892 23.93667 194.7158 145.0067

5 18 14.7683 9.9892 23.93667 194.7158 145.0067

6 17 14.7683 9.9892 23.93667 194.7158 145.0067

7 16 14.7683 9.9892 23.93667 194.7158 145.0067

8 15 14.7683 9.9892 23.93667 194.7158 145.0067

9 14 14.7683 9.9892 23.93667 194.7158 145.0067

10 13 14.7683 9.9892 23.93667 194.7158 145.0067

target (presented in Table 6), demonstrate no change over different scenarios. In Table 9, the
results of binary variables (ξ∗

j ) for each scenario are demonstrated. From Tables 8 and 9, it
can be seen that by reducing the upper bound of potentially selected facilities, deviational
variables regarding over or under achievement of the goalsmay not vary, however, the selected
incineration plants may vary over time. For example, it can be seen that incineration plant
4 (INC4) is selected for all the possible scenarios (K ε), while INC1 is selected only for the
first scenario K ε�1 � 22.

In order to derive a conclusion out of this distribution of selection of each DMU (inciner-
ation plant), probability of selection (P∗

j ) is calculated based on the following formula:

P∗
j �

E∑
ε�1

ξ
ε,∗
j

|E | (20)

In Eq. (20), the selected DMUs are summed over each scenario, divided by the total
number of scenarios.

Results for the probability of occurrence of each DMU, are presented along with scores
derived from DEA model (1) in Table 10.

In Table 10, efficiency of eachDMU (1−β∗) is derived by applyingDEAmodel (1), taking
as inputs, the inputs of Table 4, Exported Power from Table 5 as desirable output and gas
emissions from Table 4 as undesirable outputs. The rankings of the proposedmodel and DEA
model (1) are presented, and in order to come to a conclusion as to whether the two examined
techniques provide equal rankings,Kolmogorov–Smirnov (K–S) andMann–Whitney (M–W)
test non- parametric tests are applied. The hypotheses that are examined in K–S test, is
whether the rankings come from the same distribution (null hypothesis), or not from the
same distribution (alternative hypothesis). Using M–W test, randomness is checked; null
hypothesis states that the two variables (in this case rankings) follow the same pattern, while
on the other hand, alternative hypothesis states that two variables are stochastically distributed
and do not follow any pattern.

Results for p values for the two aforementioned tests are demonstrated in Table 11, and
show that both rankings come from the same distribution and follow the same pattern. Based
on this finding, it can be concluded that the presented model keeps all the properties of DEA
model (1), but can provide additional information regarding the selection of an incineration
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Table 10 Results for scores of DEAmodel (1) and proposed GP/DEAmodel (9) with rankings of incineration
plants

1 − β∗ P∗
j Ranking

DEA model (1)
Ranking
GP/DEA model (9)

INC1 0.997206 0.1 7 19

INC2 0.381189 0.9 15 13

INC3 1 1 1 1

INC4 0.416586 1 13 1

INC5 0.345754 0.9 17 13

INC6 1 0.1 1 19

INC7 0.639598 0.1 9 19

INC8 0.227494 0.1 20 19

INC9 0.49892 0.9 10 13

INC10 0.024401 1 21 1

INC11 0.444879 1 11 1

INC12 0.351652 1 16 1

INC13 0.254815 1 19 1

INC14 0.342015 1 18 1

INC15 0.425952 0.9 12 13

INC16 0.728238 0.7 8 18

INC17 1 1 1 1

INC18 1 0.8 1 17

INC19 0.010188 1 22 1

INC20 1 1 1 1

INC21 0.408029 1 14 1

INC22 1 1 1 1

Table 11 Results of
non-parametric tests

Test p value Hypothesis accepted

K–S test 0.378 H0: The variables come from the same
distribution

M–W test 0.242 H0: The variables follow the same pattern

plant. Also the proposed formulation is flexible and can incorporate both qualitative (people’s
perceptions, social data, preference etc.) and quantitative data.

5 Discussion

Performance measurement of incineration plants is a multiple objective decision-making
problem. The incineration plants’ objectives are to consume as much waste as possible,
maximizing desirable outputs (e.g. heat and power) and minimizing undesirable outputs
(emission and bottom ash). In this study a combined DEA, GP and MILP model is presented
to measure incineration plants’ performance that derives plants’ efficiency within the desired
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goals. Additionally, identifies sub optimal plants that are candidates for shutting down either
permanently or temporarily. This enables deriving improvement measures for each plants
and develop business case for improvement projects. The model first identifies the DMUs
(incineration plants), input and output criteria for plant performance. Data envelopment
analysis (DEA) helps deriving efficiencies of DMUs by comparing the inputs and outputs
of each unit against each other. Goal Programming facilitates to set goals for each criterion
and derives decision variables throughminimizing the deviations from each goal. Combining
DEA and GP into a single framework, helps derive efficiency score of each unit within the
desired goals. The use of binary variables (0, 1) through mixed integer linear programming
(MILP) modeling allows selection of efficient units on the basis of the achievement of the
desired goals.

The DEA models for performance measurement of incineration have been extensively
used in the literature. Although DEA and GP have been applied separately for optimizing
incineration plants performance, according to authors’ knowledge there is no research that
combines DEA and GP in incineration plants’ performance measurement and management.
Moreover, in this study we combine DEA/GP model with MILP modelling to incorporate
binary variables (0, 1) for scenario building. This enables to model the performance of
incineration plants within a region to optimize their combined performance in a multiple
objectives scenario (e.g. maximize power and heat production, minimize environmental and
social impact). This facilitates to select the most appropriate plants for continuing operations
and suggest shutting of a few facilities on the basis of their lower overall performance. The
inefficient plants could be further studied to decide to undertake further maintenance to
enhance their performance before reintroducing for operations. Additionally, this model is
capable of analysing feasibility of adding new plants with a few objective goals (e.g. waste
consumption, energy and heat production, emission targets, auxiliary loads, social benefits
targets). The proposed model in one hand facilitates individual plant operator to analyse their
performance through benchmarking and allows deriving means for improvement and on
the other hand helps the policymakers to plan for cleaner environment efficiently. This also
facilitates to derive budget allocations for overall improvement of incineration operations
across the region. Therefore, this study theoretically contributes a model for performance
measurement that enables not only segregating efficient and inefficient DMUs (incineration
plants) using series of inputs and outputs but also facilitates making decision on how to
achieve desired holistic goals by closing or introducing units. In this paper, the effectiveness
of the model has been demonstrated through application in incineration plants’ performance
measurement. The model could be applied in several similar scenarios (e.g. retails’ decision-
making on closing down shops, banks’ decision on closing of units), which is beyond the
scope of this paper but could be considered as further scope of research.

The proposed model can be further extended to incorporate advanced scheduling and
time window constraints for the removal of waste and transportation to incineration plants
for power and heat production. The ability of DEA technique to consider inputs and outputs
is utilized to develop a performance measurement model of each incineration plant. The
presented formulation aims at the reduction of the examined facilities that exceed the envi-
ronmental targets set but satisfy the constraints of power exported and annual availability.
The basic idea of not setting power exported and annual availability in GP constraints is that
the more each incineration plant works and the more power is exported to the grid, the more
emissions are generated. The resulting model is a MILP model, with decision variables pro-
viding levels of decisions regarding: (a) which incineration plant satisfies the environmental
targets and remains open, (b) the level of achievement of the goals per each scenario, and
(c) the peers of that plant. As due to MINLP formulation, local optima may arise, lineariza-
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tion constraints are introduced in order to make the model linear and obtain global optimal
solution. With this formulation, it is possible to evaluate different combinations of plants and
numbers of facilities that will be opened by solving the model for various scenarios of the
number of facilities that will be eventually remain opened. Operational constraints on power
exported and annual availability of each incineration plant are introduced. Preprocessing of
data indicated that these constraints are “either-or” type; constraints regarding the number
of incineration plants that will be potentially installed are also taken into account. In this
paper a holistic study that examines incineration plants in a centralized way is presented. The
objective of the problem ismulti-objective as each incineration plant must increase its outputs
(power, heat) and to minimize the undesirable outputs (emissions). Thus, the efficiency is
examined taking into account themultivariate nature of the problem; the highest power or heat
exported to the grid with the lowest harmful emissions. Such model has not been proposed
before in the known literature as provides decision levels, not only regarding the “peers” of
each incineration plant, but also about whether the incineration plant can be eventually be
installed subjected to constraints regarding the power that should be exported and the annual
availability. Each incineration plant that does not meet these requirements is not selected and
therefore the total overachievement target is minimized. The novelty of the paper lies on the
fact that a new type of efficiency is formed using GP and DEA methods. Inefficient units
are not selected, thus, the reference set is constructed upon selected DMUs. This is useful
in situations where performance needs to consider additional constraints regarding the nature
of the problem. Also, decisions regarding selection of the units, adjusts regarding the goals
set and disjunctive constraints. This characteristic cannot be addressed using DEA or GP.

The proposed model can be used by policymakers, governmental bodies and public envi-
ronmental authorities as incineration plants export heat and/or power to the grid, nevertheless,
harmful emissions are emitted as well. Therefore, the performance of each incineration plant
should be seen on a centralized level. The decisions as to whether an incineration plant should
run or shut down have valuable managerial insights. However, by shutting down an incin-
eration plant may cause problems in energy demand satisfaction and not achieving waste
reduction target. Therefore, this decision needs to be holistic by taking into consideration of
group of plants performance to achieve the overall goals of the region. In this case, shutting
down a plant, because is not efficient in the ways described in the analysis, is conducted tak-
ing into account the capacity of the remaining plants. Besides the managerial implications,
the novelty of the proposed model lies on the fact that it proposes a dynamic and flexible
framework for performance measurement based on goals and structural constraints, filling
the gap of the incapability of DEA and GP models separately. The proposed model can be
further extended to incorporate social (citizen’s satisfaction) and financial (transportation
cost and quantities) aspects.

6 Conclusions

Incineration plants consume waste and produce heat and power and contribute in reducing
greenhouse gas emission. However, negative environmental impact of incineration is also
substantial through emission of gases and bottom ash production. Because of variability
of waste quality incineration plants’ outputs (energy, heat, emission and bottom ash) keep
varying. Therefore, dynamic measurement of plants’ performance helps achieving overall
performance targets incineration in a specific region by shutting down the inefficient plants as
andwhen desired in linewith their performance. The proposed combinedDEA,GP andMILP
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based performance measurement and decision-making model facilitates policy makers and
plant operators to operate incineration plants optimally through objectively deriving plants’
performance through benchmarking. Additionally, the model allows them to derive desired
improvement measures to make the inefficient plants efficient.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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