3,530 research outputs found
Introducing CatOracle: Corpus-based concatenative improvisation with the Audio Oracle algorithm
CATORACLE responds to the need to join high-level control of audio timbre with the organization of musical form in time. It is inspired by two powerful existing tools: CataRT for corpus-based concatenative synthesis based on the MUBU for MAX library, and PYORACLE for computer improvisation, combining for the first time audio descriptor analysis and learning and generation of musical structures. Harnessing a user-defined list of audio fea- tures, live or prerecorded audio is analyzed to construct an “Audio Oracle” as a basis for improvisation. CatOracle also extends features of classic concatenative synthesis to include live interactive audio mosaicking and score-based transcription using the BACH library for MAX. The project suggests applications not only to live performance of written and improvised electroacoustic music, but also computer-assisted composition and musical analysis
Protein Translocons Multifunctional Mediators of Protein Translocation across Membranes
AbstractProtein translocation systems consist of complex molecular machines whose activities are not limited to unidirectional protein targeting. Protein translocons and their associated receptor systems can be viewed as dynamic modular units whose interactions, and therefore functions, are regulated in response to specific signals. This flexibility allows translocons to interact with multiple signal receptor systems to manage the targeting of topologically distinct classes of proteins, to mediate targeting to different suborganellar compartments, and to respond to stress and developmental cues. Furthermore, the activities of translocons are tightly coordinated with downstream events, thereby providing a direct link between targeting and protein maturation
Q(2) dependence of nuclear transparency for exclusive rho(0) production
Exclusive coherent and incoherent electroproduction of the rho(0) meson from H-1 and N-14 targets has been studied at the HERMES experiment as a function of coherence length (l(c)), corresponding to the lifetime of hadronic fluctuations of the virtual photon, and squared four-momentum of the virtual photon (-Q(2)). The ratio of N-14 to H-1 cross sections per nucleon, called nuclear transparency, was found to increase (decrease) with increasing l(c) for coherent (incoherent) rho(0) electroproduction. For fixed l(c), a rise of nuclear transparency with Q(2) is observed for both coherent and incoherent rho(0) production, which is in agreement with theoretical calculations of color transparency
Synoptic and meteorological drivers of extreme ozone concentrations over Europe
The present work assesses the relationship between local and synoptic
meteorological conditions and surface ozone concentration over Europe in
spring and summer months, during the period 1998–2012 using a new interpolated
data set of observed surface ozone concentrations over the European domain.
Along with local meteorological conditions, the influence of large-scale
atmospheric circulation on surface ozone is addressed through a set of airflow
indices computed with a novel implementation of a grid-by-grid weather type
classification across Europe. Drivers of surface ozone over the full
distribution of maximum daily 8 h average values are investigated, along with
drivers of the extreme high percentiles and exceedances or air quality
guideline thresholds. Three different regression techniques are applied:
multiple linear regression to assess the drivers of maximum daily ozone,
logistic regression to assess the probability of threshold exceedances and
quantile regression to estimate the meteorological influence on extreme
values, as represented by the 95th percentile. The relative importance of the
input parameters (predictors) is assessed by a backward stepwise regression
procedure that allows the identification of the most important predictors in
each model. Spatial patterns of model performance exhibit distinct variations
between regions. The inclusion of the ozone persistence is particularly
relevant over southern Europe. In general, the best model performance is found
over central Europe, where the maximum temperature plays an important role as
a driver of maximum daily ozone as well as its extreme values, especially
during warmer months
Carotid Intima-Media Thickness Progression in HIV-Infected Adults Occurs Preferentially at the Carotid Bifurcation and Is Predicted by Inflammation.
BackgroundShear stress gradients and inflammation have been causally associated with atherosclerosis development in carotid bifurcation regions. The mechanism underlying higher levels of carotid intima-media thickness observed among HIV-infected individuals remains unknown.Methods and resultsWe measured carotid intima-media thickness progression and development of plaque in the common carotid, bifurcation region, and internal carotid artery in 300 HIV-infected persons and 47 controls. The median duration of follow-up was 2.4 years. When all segments were included, the rate of intima-media thickness progression was greater in HIV-infected subjects compared with controls after adjustment for traditional risk factors (0.055 vs. 0.024 mm/year, P=0.016). Rate of progression was also greater in the bifurcation region (0.067 vs. 0.025 mm/year, P=0.042) whereas differences were smaller in the common and internal regions. HIV-infected individuals had a greater incidence of plaque compared with controls in the internal (23% vs. 6.4%, P=0.0037) and bifurcation regions (34% vs. 17%, P=0.014). Among HIV-infected individuals, the rate of progression in the bifurcation region was more rapid compared with the common carotid, internal, or mean intima-media thickness; in contrast, progression rates among controls were similar at all sites. Baseline hsCRP was elevated in HIV-infected persons and was a predictor of progression in the bifurcation region.ConclusionsAtherosclerosis progresses preferentially in the carotid bifurcation region in HIV-infected individuals. hsCRP, a marker of inflammation, is elevated in HIV and is associated with progression in the bifurcation region. These data are consistent with a model in which the interplay between hemodynamic shear stresses and HIV-associated inflammation contribute to accelerated atherosclerosis. (J Am Heart Assoc. 2012;1:jah3-e000422 doi: 10.1161/JAHA.111.000422.)Clinical trial registrationURL: http://clinicaltrials.gov. Unique identifier: NCT01519141
A model sensitivity study of the impact of clouds on satellite detection and retrieval of volcanic ash
Volcanic ash is commonly observed by infrared detectors on board Earth-orbiting satellites. In the presence of ice and/or liquid-water clouds, the detected volcanic ash signature may be altered. In this paper the sensitivity of detection and retrieval of volcanic ash to the presence of ice and liquid-water clouds was quantified by simulating synthetic equivalents to satellite infrared images with a 3-D radiative transfer model. The sensitivity study was made for the two recent eruptions of Eyjafjallajokull (2010) and Grimsvotn (2011) using realistic water and ice clouds and volcanic ash clouds. The water and ice clouds were taken from European Centre for Medium-RangeWeather Forecast (ECMWF) analysis data and the volcanic ash cloud fields from simulations by the Lagrangian particle dispersion model FLEXPART. The radiative transfer simulations were made both with and without ice and liquid-water clouds for the geometry and channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The synthetic SEVIRI images were used as input to standard reverse absorption ash detection and retrieval methods. Ice and liquid-water clouds were on average found to reduce the number of detected ash-affected pixels by 6-12 %. However, the effect was highly variable and for individual scenes up to 40% of pixels with mass loading > 0 : 2 gm 2 could not be detected due to the presence of water and ice clouds. For coincident pixels, i. e. pixels where ash was both present in the FLEXPART (hereafter referred to as "Flexpart") simulation and detected by the algorithm, the presence of clouds overall increased the retrieved mean mass loading for the Eyjafjallajokull (2010) eruption by about 13 %,while for the Grimsvotn (2011) eruption ash-mass loadings the effect was a 4% decrease of the retrieved ash-mass loading. However, larger differences were seen between scenes (standard deviations of +/- 30 and +/- 20% for Eyjafjallajokull and Grimsvotn, respectively) and even larger ones within scenes. The impact of ice and liquid-water clouds on the detection and retrieval of volcanic ash, implies that to fully appreciate the location and amount of ash, hyperspectral and spectral band measurements by satellite instruments should be combined with ash dispersion modelling
Dielectronic Recombination of Fe XV forming Fe XIV: Laboratory Measurements and Theoretical Calculations
We have measured resonance strengths and energies for dielectronic
recombination (DR) of Mg-like Fe XV forming Al-like Fe XIV via N=3 -> N' = 3
core excitations in the electron-ion collision energy range 0-45 eV. All
measurements were carried out using the heavy-ion Test Storage Ring at the Max
Planck Institute for Nuclear Physics in Heidelberg, Germany. We have also
carried out new multiconfiguration Breit-Pauli (MCBP) calculations using the
AUTOSTRUCTURE code. For electron-ion collision energies < 25 eV we find poor
agreement between our experimental and theoretical resonance energies and
strengths. From 25 to 42 eV we find good agreement between the two for
resonance energies. But in this energy range the theoretical resonance
strengths are ~ 31% larger than the experimental results. This is larger than
our estimated total experimental uncertainty in this energy range of +/- 26%
(at a 90% confidence level). Above 42 eV the difference in the shape between
the calculated and measured 3s3p(^1P_1)nl DR series limit we attribute partly
to the nl dependence of the detection probabilities of high Rydberg states in
the experiment. We have used our measurements, supplemented by our
AUTOSTRUCTURE calculations, to produce a Maxwellian-averaged 3 -> 3 DR rate
coefficient for Fe XV forming Fe XIV. The resulting rate coefficient is
estimated to be accurate to better than +/- 29% (at a 90% confidence level) for
k_BT_e > 1 eV. At temperatures of k_BT_e ~ 2.5-15 eV, where Fe XV is predicted
to form in photoionized plasmas, significant discrepancies are found between
our experimentally-derived rate coefficient and previously published
theoretical results. Our new MCBP plasma rate coefficient is 19-28% smaller
than our experimental results over this temperature range
- …