365 research outputs found

    Development of a Protocol to Test Proprioceptive Utilization as a Predictor for Sensorimotor Adaptability

    Get PDF
    Astronauts returning from space flight show significant inter-subject variations in their abilities to readapt to a gravitational environment because of their innate sensory weighting. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. We hypothesize participant's ability to utilize individual sensory information (vision, proprioception and vestibular) influences adaptation in sensorimotor performance after space flight. The goal of this study is to develop a reliable protocol to test proprioceptive utilization in a functional postural control task. Subjects "stand" in a supine position while strapped to a backpack frame holding a friction-free device using air-bearings that allow the subject to move freely in the frontal plane, similar to when in upright standing. The frame is attached to a pneumatic cylinder, which can provide different levels of a gravity-like force that the subject must balance against to remain "upright". The supine posture with eyes closed ensures reduced vestibular and visual contribution to postural control suggesting somatosensory and/or non-otolith vestibular inputs will provide relevant information for maintaining balance control in this task. This setup is called the gravity bed. Fourteen healthy subjects carried out three trials each with eyes open alternated with eyes closed, "standing" on their dominant leg in the gravity bed environment while loaded with 60 percent of their body weight. Subjects were instructed to: "use your sense of sway about the ankle and pressure changes under the foot to maintain balance." Maximum length of a trial was 45 seconds. A force plate underneath the foot recorded forces and moments during the trial and an inertial measurement unit (IMU) attached on the backpack's frame near the center of mass of the subject recorded upper body postural responses. Series of linear and non-linear analyses were carried out on several force plate and IMU data including stabilogram diffusion analysis on the center of pressure (COP) to find a subset of parameters that were sensitive to detect differences in postural performance between eyes open and closed conditions. Results revealed that seven parameters (root mean square (RMS) of medio-lateral (ML) COP, range of ML COP, RMS of roll moment, range of trunk roll, minimum time-to-boundary (TTB), integrated TTB, and critical mean square planar displacement (delta r (sup 2) (sub c)) were significantly different between eyes open and closed conditions. We will present data to show the efficacy of using performance in single leg stance with eyes closed on the gravity bed to assess individuals' ability to utilize proprioceptive information in a functional postural control task to predict re-adaptation for sensorimotor and functional performance

    Neural correlates of multi-day learning and savings in sensorimotor adaptation

    Get PDF
    Abstract In the present study we evaluated changes in neural activation that occur over the time course of multiple days of sensorimotor adaptation, and identified individual neural predictors of adaptation and savings magnitude. We collected functional MRI data while participants performed a manual adaptation task during four separate test sessions over a three-month period. This allowed us to examine changes in activation and associations with adaptation and savings at subsequent sessions. Participants exhibited reliable savings of adaptation across the four sessions. Brain activity associated with early adaptation increased across the sessions in a variety of frontal, parietal, cingulate, and temporal cortical areas, as well as various subcortical areas. We found that savings was positively associated with activation in several striatal, parietal, and cingulate cortical areas including the putamen, precuneus, angular gyrus, dorsal anterior cingulate cortex (dACC), and cingulate motor area. These findings suggest that participants may learn how to better engage cognitive processes across days, potentially reflecting improvements in action selection. We propose that such improvements may rely on action-value assignments, which previously have been linked to the dACC and striatum. As correct movements are assigned a higher value than incorrect movements, the former are more likely to be performed again

    Tratamientos habituales utilizados en cefaleas, neuralgias y SARS-CoV-2. Posicionamiento del grupo de estudio de cefaleas de la Sociedad Española de Neurología

    Get PDF
    Introducción: En los últimos meses han surgido dudas por parte de pacientes, médicos de familia y neurólogos sobre la posibilidad de que algunos de los fármacos que habitualmente se utilizan en cefaleas y neuralgias puedan facilitar o complicar la infección por el SARS-CoV-2. Material y métodos: Hemos recabado información sobre el posicionamiento de sociedades científicas, así como de las distintas Agencias de Medicamentos (americana, europea y española) para poder esclarecer dudas respecto al uso de fármacos como lisinopril, candesartán, ibuprofeno, corticoides, carbamazepina, anticuerpos monoclonales contra el péptido relacionado con el gen de la calcitonina (CGRP) durante la pandemia por COVID-19. Resultados: Planteamos recomendaciones acerca del uso de fármacos habituales en el tratamiento de las cefaleas en el contexto de la pandemia por COVID-19, basándonos en las evidencias de las que disponemos en el momento actual. Conclusiones: Actualmente no existe ningún argumento científico robusto para contraindicar formalmente ninguno de los tratamientos que se emplean en cefaleas y neuralgias

    Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the ‘Angry Summer’ of 2012/2013

    Get PDF
    As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. While land-surface feedbacks in drought conditions and during heat waves have been reported from Europe and the US, direct observations of the impact of such extremes on the carbon and water cycles in Australia have been lacking. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. In this study we synthesised eddy-covariance measurements from seven woodlands and one forest site across three biogeographic regions in southern Australia. These observations were combined with model results from BIOS2 (Haverd et al., 2013a, b) to investigate the effect of the summer heat wave on the carbon and water exchange of terrestrial ecosystems which are known for their resilience toward hot and dry conditions. We found that water-limited woodland and energy-limited forest ecosystems responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux (23 % of background value), increased Bowen ratio (154 %) and reduced carbon uptake (60 %). At the same time the forest ecosystem showed increased latent heat flux (151 %), reduced Bowen ratio (19 %) and increased carbon uptake (112 %). Higher temperatures caused increased ecosystem respiration at all sites (up to 139 %). During daytime all ecosystems remained carbon sinks, but carbon uptake was reduced in magnitude. The number of hours during which the ecosystem acted as a carbon sink was also reduced, which switched the woodlands into a carbon source on a daily average. Precipitation occurred after the first, most intense part of the heat wave, and the subsequent cooler temperatures in the temperate woodlands led to recovery of the carbon sink, decreased the Bowen ratio (65 %) and hence increased evaporative cooling. Gross primary productivity in the woodlands recovered quickly with precipitation and cooler temperatures but respiration remained high. While the forest proved relatively resilient to this short-term heat extreme the response of the woodlands is the first direct evidence that the carbon sinks of large areas of Australia may not be sustainable in a future climate with an increased number, intensity and duration of heat waves.Eva van Gorsel, Sebastian Wolf, James Cleverly, Peter Isaac, Vanessa Haverd, Cäcilia Ewenz, Stefan Arndt, Jason Beringer, Víctor Resco de Dios, Bradley J. Evans, Anne Griebel, Lindsay B. Hutley, Trevor Keenan, Natascha Kljun, Craig Macfarlane, Wayne S. Meyer, Ian McHugh, Elise Pendall, Suzanne M. Prober and Richard Silberstei

    An introduction to the Australian and New Zealand flux tower network - OzFlux

    Get PDF
    Published: 31 October 2016OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m⁻² yr⁻¹) and the natural raised peat bog site having a very low GPP (820 gC m⁻² yr⁻¹). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.Jason Beringer ... Wayne Meyer ... et al

    Magnetic resonance microscopy and correlative histopathology of the infarcted heart

    Get PDF
    Altres ajuts:The present study was supported by the EU Joint Programming Initiative 'A Healthy Diet for a Healthy Life' (JPI HDHL INTIMIC-085), Generalitat Valenciana (GV/2018/116), INCLIVA and Universitat de Valencia (program VLC-BIOCLINIC 20-nanomIRM-2016A).Delayed enhancement cardiovascular magnetic resonance (MR) is the gold-standard for non-invasive assessment after myocardial infarction (MI). MR microscopy (MRM) provides a level of detail comparable to the macro objective of light microscopy. We used MRM and correlative histopathology to identify infarct and remote tissue in contrast agent-free multi-sequence MRM in swine MI hearts. One control group (n = 3 swine) and two experimental MI groups were formed: 90 min of ischemia followed by 1 week (acute MI = 6 swine) or 1 month (chronic MI = 5 swine) reperfusion. Representative samples of each heart were analysed by contrast agent-free multi-sequence (T1-weighting, T2-weighting, T2*-weighting, T2-mapping, and T2*-mapping). MRM was performed in a 14-Tesla vertical axis imager (Bruker-AVANCE 600 system). Images from MRM and the corresponding histopathological stained samples revealed differences in signal intensities between infarct and remote areas in both MI groups (p-value < 0.001). The multivariable models allowed us to precisely classify regions of interest (acute MI: specificity 92% and sensitivity 80%; chronic MI: specificity 100% and sensitivity 98%). Probabilistic maps based on MRM images clearly delineated the infarcted regions. As a proof of concept, these results illustrate the potential of MRM with correlative histopathology as a platform for exploring novel contrast agent-free MR biomarkers after MI

    Sensorimotor Predictors of Post-Landing Functional Task Performance

    Get PDF
    Spaceflight drives adaptive changes in healthy individuals appropriate for sensorimotor function in a microgravity environment. These changes are maladaptive for return to earth's gravity. The inter-individual variability of sensorimotor decrements is striking, although poorly understood. The goal of this study is to identify a set of behavioral, neuroimaging and genetic measures that can potentially be used to predict early performance following G-transitions such as return to Earth on a set of sensorimotor tasks. Astronauts are being recruited who previously participated in sensorimotor field tests and/or dynamic posturography (MedB) within R+1 days following long-duration spaceflight

    NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional 13C Solid-State NMR and ab Initio Chemical Shift Calculations

    Get PDF
    Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D C-13 double-quantum/single-quantum correlation SSNMR spectrum of C-13-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). C-13 chemical shift anisotropy (CSA) patterns measured by a 2D C-13 CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems

    An introduction to the Australian and New Zealand flux tower network - OzFlux

    Get PDF
    © Author(s) 2016. OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m-2 yr-1) and the natural raised peat bog site having a very low GPP (820 gC m-2 yr-1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia
    corecore