2,207 research outputs found

    An XMM-Newton view of Planetary Nebulae in the Small Magellanic Cloud. The X-ray luminous central star of SMP SMC 22

    Full text link
    During an X-ray survey of the Small Magellanic Cloud, carried out with the XMM-Newton satellite, we detected significant soft X-ray emission from the central star of the high-excitation planetary nebula SMP SMC 22. Its very soft spectrum is well fit with a non local thermodynamical equilibrium model atmosphere composed of H, He, C, N, and O, with abundances equal to those inferred from studies of its nebular lines. The derived effective temperature of 1.5x10^5 K is in good agreement with that found from the optical/UV data. The unabsorbed flux in the 0.1-0.5 keV range is about 3x10^{-11} erg cm^-2 s^-1, corresponding to a luminosity of 1.2x10^37 erg/s at the distance of 60 kpc. We also searched for X-ray emission from a large number of SMC planetary nebulae, confirming the previous detection of SMP SMC 25 with a luminosity of (0.2-6)x10^35 erg/s (0.1-1 keV). For the remaining objects that were not detected, we derived flux upper limits corresponding to luminosity values from several tens to hundreds times smaller than that of SMP SMC 22. The exceptionally high X-ray luminosity of SMP SMC 22 is probably due to the high mass of its central star, quickly evolving toward the white dwarf's cooling branch, and to a small intrinsic absorption in the nebula itself.Comment: Accepted for publication on Astronomy and Astrophysic

    An analysis of the FIR/RADIO Continuum Correlation in the Small Magellanic Cloud

    Full text link
    The local correlation between far-infrared (FIR) emission and radio-continuum (RC) emission for the Small Magellanic Cloud (SMC) is investigated over scales from 3 kpc to 0.01 kpc. Here, we report good FIR/RC correlation down to ~15 pc. The reciprocal slope of the FIR/RC emission correlation (RC/FIR) in the SMC is shown to be greatest in the most active star forming regions with a power law slope of ~1.14 indicating that the RC emission increases faster than the FIR emission. The slope of the other regions and the SMC are much flatter and in the range of 0.63-0.85. The slopes tend to follow the thermal fractions of the regions which range from 0.5 to 0.95. The thermal fraction of the RC emission alone can provide the expected FIR/RC correlation. The results are consistent with a common source for ultraviolet (UV) photons heating dust and Cosmic Ray electrons (CRe-s) diffusing away from the star forming regions. Since the CRe-s appear to escape the SMC so readily, the results here may not provide support for coupling between the local gas density and the magnetic field intensity.Comment: 19 pages, 7 Figure

    The XMM-Newton survey of the Small Magellanic Cloud: The X-ray point-source catalogue

    Get PDF
    Local-Group galaxies provide access to samples of X-ray source populations of whole galaxies. The XMM-Newton survey of the Small Magellanic Cloud (SMC) completely covers the bar and eastern wing with a 5.6 deg^2 area in the (0.2-12.0) keV band. To characterise the X-ray sources in the SMC field, we created a catalogue of point sources and sources with moderate extent. Sources with high extent (>40") have been presented in a companion paper. We searched for point sources in the EPIC images using sliding-box and maximum-likelihood techniques and classified the sources using hardness ratios, X-ray variability, and their multi-wavelength properties. The catalogue comprises 3053 unique X-ray sources with a median position uncertainty of 1.3" down to a flux limit for point sources of ~10^-14 erg cm^-2 s^-1 in the (0.2-4.5) keV band, corresponding to 5x10^33 erg s^-1 for sources in the SMC. We discuss statistical properties, like the spatial distribution, X-ray colour diagrams, luminosity functions, and time variability. We identified 49 SMC high-mass X-ray binaries (HMXB), four super-soft X-ray sources (SSS), 34 foreground stars, and 72 active galactic nuclei (AGN) behind the SMC. In addition, we found candidates for SMC HMXBs (45) and faint SSSs (8) as well as AGN (2092) and galaxy clusters (13). We present the most up-to-date catalogue of the X-ray source population in the SMC field. In particular, the known population of X-ray binaries is greatly increased. We find that the bright-end slope of the luminosity function of Be/X-ray binaries significantly deviates from the expected universal high-mass X-ray binary luminosity function.Comment: 32 pages, 18 figures, accepted for publication in A&A, catalog will be available at CD

    The Spectral Energy Distribution of Powerful Starburst Galaxies I: Modelling the Radio Continuum

    Get PDF
    We have acquired radio continuum data between 70\,MHz and 48\,GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067<z<0.2270.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework we find the radio continuum is rarely characterised well by a single power law, instead often exhibiting low frequency turnovers below 500\,MHz, steepening at mid-to-high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 to 500\,MHz the radio-continuum at low frequency (ν<200\nu < 200\,MHz) could be overestimated by upwards of a factor of twelve if a simple power law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α=1.06\alpha=-1.06, which is steeper then the canonical value of 0.8-0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution

    A multi-resolution analysis of the radio-FIR correlation in the Large Magellanic Cloud

    Full text link
    We investigate the local correlation betwen the 1.4 GHz radio continuum and 60 micron far-infrared (FIR) emission within the Large Magellanic Cloud (LMC) on spatial scales between 0.05 and 1.5 kpc. On scales below ~1 kpc, the radio-FIR correlation is clearly better than the correlation of the cold gas tracers with either the radio or the FIR emission. For the LMC as a whole, there is a tight correlation between the radio and FIR emission on spatial scales above ~50 pc. By decomposing the radio emission into thermal and non-thermal components, however, we show that the scale on which the radio-FIR correlation breaks down is inversely proportional to the thermal fraction of the radio emission: regions that show a strong correlation to very small scales are the same regions where the thermal fraction of the radio emission is high. Contrary to previous studies of the local radio-FIR correlation in the LMC, we show that the slope of the relation between the radio and FIR emission is non-linear. In bright star-forming regions, the radio emission increases faster than linearly with respect to the FIR emission (power-law slope of ~1.2), whereas a flatter slope of ~0.6-0.9 applies more generally across the LMC. Our results are consistent with a scenario in which the UV photons and cosmic rays in the LMC have a common origin in massive star formation, but the cosmic rays are able to diffuse away from their production sites. Our results do not provide direct evidence for coupling between the magnetic field and the local gas density, but we note that synchrotron emission may not be a good tracer of the magnetic field if cosmic rays can readily escape the LMC.Comment: 20 pages, accepted MNRAS, full-resolution version available at http://www.atnf.csiro.au/people/twong/preprints/lmcwavlt.pd

    Molecular Clouds associated with the Type Ia SNR N103B in the Large Magellanic Cloud

    Full text link
    N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out new 12^{12}CO(JJ = 3-2) and 12^{12}CO(JJ = 1-0) observations using ASTE and ALMA. We have confirmed the existence of a giant molecular cloud (GMC) at VLSRV_\mathrm{LSR} \sim245 km s1^{-1} towards the southeast of the SNR using ASTE 12^{12}CO(JJ = 3-2) data at an angular resolution of \sim25"" (\sim6 pc in the LMC). Using the ALMA 12^{12}CO(JJ = 1-0) data, we have spatially resolved CO clouds along the southeastern edge of the SNR with an angular resolution of \sim1.8"" (\sim0.4 pc in the LMC). The molecular clouds show an expanding gas motion in the position-velocity diagram with an expansion velocity of 5\sim5 km s1^{-1}. The spatial extent of the expanding shell is roughly similar to that of the SNR. We also find tiny molecular clumps in the directions of optical nebula knots. We present a possible scenario that N103B exploded in the wind-bubble formed by the accretion winds from the progenitor system, and is now interacting with the dense gas wall. This is consistent with a single-degenerate scenario.Comment: 12 pages, 1 table, 8 figures, accepted for publication in The Astrophysical Journal (ApJ

    ALMA CO Observations of Supernova Remnant N63A in the Large Magellanic Cloud: Discovery of Dense Molecular Clouds Embedded within Shock-Ionized and Photoionized Nebulae

    Full text link
    We carried out new 12^{12}CO(JJ = 1-0, 3-2) observations of a N63A supernova remnant (SNR) from the LMC using ALMA and ASTE. We find three giant molecular clouds toward the northeast, east, and near the center of the SNR. Using the ALMA data, we spatially resolved clumpy molecular clouds embedded within the optical nebulae in both the shock-ionized and photoionized lobes discovered by previous Hα\alpha and [S II] observations. The total mass of the molecular clouds is \sim800800 MM_{\odot} for the shock-ionized region and \sim17001700 MM_{\odot} for the photoionized region. Spatially resolved X-ray spectroscopy reveals that the absorbing column densities toward the molecular clouds are \sim1.51.5-6.0×10216.0\times10^{21} cm2^{-2}, which are \sim1.51.5-1515 times less than the averaged interstellar proton column densities for each region. This means that the X-rays are produced not only behind the molecular clouds, but also in front of them. We conclude that the dense molecular clouds have been completely engulfed by the shock waves, but have still survived erosion owing to their high-density and short interacting time. The X-ray spectrum toward the gas clumps is well explained by an absorbed power-law or high-temperature plasma models in addition to the thermal plasma components, implying that the shock-cloud interaction is efficiently working for both the cases through the shock ionization and magnetic field amplification. If the hadronic gamma-ray is dominant in the GeV band, the total energy of cosmic-ray protons is calculated to be \sim0.30.3-1.4×10491.4\times10^{49} erg with the estimated ISM proton density of \sim190±90190\pm90 cm3^{-3}, containing both the shock-ionized gas and neutral atomic hydrogen.Comment: 18 pages, 4 tables, 8 figures, accepted for publication in The Astrophysical Journal (ApJ

    Selenotriapine – An isostere of the most studied thiosemicarbazone with pronounced pro-apoptotic activity, low toxicity and ability to challenge phenotype reprogramming of 3-D mammary adenocarcinoma tumors

    Get PDF
    Triapine, the most studied α-N-heterocyclic thiosemicarbazone, revealed potent activity against advanced leukemia, but was ineffective against a variety of solid tumors. Moreover, methemoglobinemia, which is a side effect of triapine administration, may limits all clinical application. To enhance anticancer activity and reduce side effects, we applied an isosteric replacement of sulfur to selenium atom was performed by synthesis and characterization of selenium triapine analog, 3-aminopyridine-2-carboxaldehyde selenosemicarbazone (selenotriapine). Compared to triapine, selenotriapine revealed superior pro-apoptotic activity with activation of intrinsic apoptotic pathway in both human monocytic leukemia (THP-1) and mammary adenocarcinoma (MCF-7) cell lines. For MCF-7 2-D cultures, selenotriapine induced notable increase in mitochondrial superoxide radical generation and dissipation of mitochondrial transmembrane potential. A significant delay in growth of MCF-7 spheroids (3-D culture) was accompanied by phenotypic stem cell reprogramming (Oct-4 expression). Additionally, selenotriapine demonstrated a very low toxicity profile as compared to triapine, confirmed over alleviated extent of methemoglobin formation and higher IC50 value in brine shrimp cytotoxicity assay

    The Spectral Energy Distribution of Powerful Starburst Galaxies I : Modelling the Radio Continuum

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We have acquired radio-continuum data between 70MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting lowfrequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500MHz the radio continuum at low frequency (v < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.Peer reviewe

    Highly absorbed X-ray binaries in the Small Magellanic Cloud

    Full text link
    Many of the high mass X-ray binaries (HMXRBs) discovered in recent years in our Galaxy are characterized by a high absorption, most likely intrinsic to the system, which hampers their detection at the softest X-ray energies. We have undertaken a search for highly-absorbed X-ray sources in the Small Magellanic Cloud (SMC) with a systematic analysis of 62 XMM-Newton SMC observations. We obtained a sample of 30 sources showing evidence for an equivalent hydrogen column density larger than 3x10^23 cm^-2. Five of these sources are clearly identified as HMXRBs: four were already known (including three X-ray pulsars) and one, XMM J005605.8-720012, reported here for the first time. For the latter, we present optical spectroscopy confirming the association with a Be star in the SMC. The other sources in our sample have optical counterparts fainter than magnitude ~16 in the V band, and many of them have possible NIR counterparts consistent with highly reddened early type stars in the SMC. While their number is broadly consistent with the expected population of background highly-absorbed active galactic nuclei, a few of them could be HMXRBs in which an early type companion is severely reddened by local material.Comment: 10 pages, 4 figures, 4 tables. Accepted for publication by Astronomy & Astrophysic
    corecore