138 research outputs found

    Back to BAC: The Use of Infectious Clone Technologies for Viral Mutagenesis

    Get PDF
    Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses

    Superior induction and maintenance of protective CD8 T cells in mice infected with mouse cytomegalovirus vector expressing RAE-1 

    Get PDF
    Due to a unique pattern of CD8 T-cell response induced by cytomegaloviruses (CMVs), live attenuated CMVs are attractive candidates for vaccine vectors for a number of clinically relevant infections and tumors. NKG2D is one of the most important activating NK cell receptors that plays a role in costimulation of CD8 T cells. Here we demonstrate that the expression of CD8 T-cell epitope of Listeria monocytogenes by a recombinant mouse CMV (MCMV) expressing the NKG2D ligand retinoic acid early-inducible protein 1-gamma (RAE-1γ) dramatically enhanced the effectiveness and longevity of epitope-specific CD8 T-cell response and conferred protection against a subsequent challenge infection with Listeria monocytogenes. Unexpectedly, theattenuatedgrowth in vivo of the CMV vector expressing RAE-1γ and its capacity to enhance specific CD8 T-cell response were preserved even in mice lacking NKG2D, implying additional immune function for RAE-1γ beyond engagement of NKG2D. Thus, vectors expressing RAE-1γ represent a promising approach in the development of CD8 T-cell– based vaccine

    Evidence for PTGER4, PSCA, and MBOAT7 as risk genes for gastric cancer on the genome and transcriptome level

    Get PDF
    Genetic associations between variants on chromosome 5p13 and 8q24 and gastric cancer (GC) have been previously reported in the Asian population. We aimed to replicate these findings and to characterize the associations at the genome and transcriptome level. We performed a fine-mapping association study in 1926 GC patients and 2012 controls of European descent using high dense SNP marker sets on both chromosomal regions. Next, we performed expression quantitative trait locus (eQTL) analyses using gastric transcriptome data from 143 individuals focusing on the GC associated variants. On chromosome 5p13 the strongest association was observed at rs6872282 (P = 2.53 × 10-04) and on chromosome 8q24 at rs2585176 (P = 1.09 × 10-09). On chromosome 5p13 we found cis-eQTL effects with an upregulation of PTGER4 expression in GC risk allele carrier (P = 9.27 × 10-11). On chromosome 8q24 we observed cis-eQTL effects with an upregulation of PSCA expression in GC risk allele carrier (P = 2.17 × 10-47). In addition, we found trans-eQTL effects for the same variants on 8q24 with a downregulation of MBOAT7 expression in GC risk allele carrier (P = 3.11 × 10-09). In summary, we confirmed and refined the previously reported GC associations at both chromosomal regions. Our data point to shared etiological factors between Asians and Europeans. Furthermore, our data imply an upregulated expression of PTGER4 and PSCA as well as a downregulated expression of MBOAT7 in gastric tissue as risk-conferring GC pathomechanisms

    A Gammaherpesvirus Complement Regulatory Protein Promotes Initiation of Infection by Activation of Protein Kinase Akt/PKB

    Get PDF
    BACKGROUND: Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. CONCLUSIONS/SIGNIFICANCE: In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein

    A Gammaherpesviral Internal Repeat Contributes to Latency Amplification

    Get PDF
    BACKGROUND: Gammaherpesviruses cause important infections of humans, in particular in immunocompromised patients. The genomes of gammaherpesviruses contain variable numbers of internal repeats whose precise role for in vivo pathogenesis is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We used infection of laboratory mice with murine gammaherpesvirus 68 (MHV-68) to explore the biological role of the 40 bp internal repeat of MHV-68. We constructed several mutant viruses partially or completely lacking this repeat. Both in vitro and in vivo, the loss of the repeat did not substantially affect lytic replication of the mutant viruses. However, the extent of splenomegaly, which is associated with the establishment of latency, and the number of ex vivo reactivating and genome positive splenocytes were reduced. Since the 40 bp repeat is part of the hypothetical open reading frame (ORF) M6, it might function as part of M6 or as an independent structure. To differentiate between these two possibilities, we constructed an N-terminal M6STOP mutant, leaving the repeat structure intact but rendering ORF M6 unfunctional. Disruption of ORF M6 did neither affect lytic nor latent infection. In contrast to the situation in lytically infected NIH3T3 cells, the expression of the latency-associated genes K3 and ORF72 was reduced in the latently infected murine B cell line Ag8 in the absence of the 40 bp repeat. CONCLUSIONS/SIGNIFICANCE: These data suggest that the 40 bp repeat contributes to latency amplification and might be involved in the regulation of viral gene expression

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Human Cytomegalovirus Fcγ Binding Proteins gp34 and gp68 Antagonize Fcγ Receptors I, II and III

    Get PDF
    Human cytomegalovirus (HCMV) establishes lifelong infection with recurrent episodes of virus production and shedding despite the presence of adaptive immunological memory responses including HCMV immune immunoglobulin G (IgG). Very little is known how HCMV evades from humoral and cellular IgG-dependent immune responses, the latter being executed by cells expressing surface receptors for the Fc domain of IgG (FcγRs). Remarkably, HCMV expresses the RL11-encoded gp34 and UL119-118-encoded gp68 type I transmembrane glycoproteins which bind Fcγ with nanomolar affinity. Using a newly developed FcγR activation assay, we tested if the HCMV-encoded Fcγ binding proteins (HCMV FcγRs) interfere with individual host FcγRs. In absence of gp34 or/and gp68, HCMV elicited a much stronger activation of FcγRIIIA/CD16, FcγRIIA/CD32A and FcγRI/CD64 by polyclonal HCMV-immune IgG as compared to wildtype HCMV. gp34 and gp68 co-expression culminates in the late phase of HCMV replication coinciding with the emergence of surface HCMV antigens triggering FcγRIII/CD16 responses by polyclonal HCMV-immune IgG. The gp34- and gp68-dependent inhibition of HCMV immune IgG was fully reproduced when testing the activation of primary human NK cells. Their broad antagonistic function towards FcγRIIIA, FcγRIIA and FcγRI activation was also recapitulated in a gain-of-function approach based on humanized monoclonal antibodies (trastuzumab, rituximab) and isotypes of different IgG subclasses. Surface immune-precipitation showed that both HCMV-encoded Fcγ binding proteins have the capacity to bind trastuzumab antibody-HER2 antigen complexes demonstrating simultaneous linkage of immune IgG with antigen and the HCMV inhibitors on the plasma membrane. Our studies reveal a novel strategy by which viral FcγRs can compete for immune complexes against various Fc receptors on immune cells, dampening their activation and antiviral immunity.DFG grant He 2526/6-2.European Commission grants QLRT-2001-01112 and MRTN-CT-2005-019248.Helmholtz Association through VISTRIE VH-VI-242.UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages

    Get PDF
    The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 deletion mutant lower viral titers were observed in all tissues examined when compared to wildtype MCMV, indicating an important role of m42 for viral replication in vivo. The m42 gene product was identified as an 18 kDa protein expressed with early kinetics and is predicted to be a tailanchored membrane protein. Tracking of surface-resident CD45 molecules revealed that m42 induces internalization and degradation of CD45. The observation that the amounts of the E3 ubiquitin ligases Itch and Nedd4 were diminished in cells expressing m42 and that disruption of a PY motif in the N-terminal part of m42 resulted in loss of function, suggest that m42 acts as an activator or adaptor for these Nedd4-like ubiquitin ligases, which mark CD45 for lysosomal degradation. In conclusion, the down-modulation of CD45 expression in MCMV-infected myeloid cells represents a novel pathway of virus-host interaction
    corecore