193 research outputs found
Perceived Neighborhood Cohesion Buffers COVID-19 Impacts on Mental Health in a United States Sample
Objective This study examined whether perceived neighborhood cohesion (the extent to which neighbors trust and count on one another) buffers against the mental health effects of the 2020 COVID-19 pandemic. Methods The XXX University National COVID-19 and Mental Health Study surveyed US adults (N = 3965; M age = 39 years), measuring depressive symptoms, staying home more during than before the 2020 pandemic, and perceived neighborhood cohesion. Results A series of linear regressions indicated that perceiving one\u27s neighborhood as more cohesive was not only associated with fewer depressive symptoms, but also attenuated the relationship between spending more time at home during the pandemic and depressive symptoms. These relationships persisted even after taking into account several individual-level sociodemographic characteristics as well as multiple contextual features, i.e., median household income, population density, and racial/ethnic diversity of the zip codes in which participants resided. Conclusions Neighborhood cohesion may be leveraged to mitigate pandemic impacts on depressive symptoms
Correction: Effect of Broccoli Sprouts on Nasal Response to Live Attenuated Influenza Virus in Smokers: A Randomized, Double-Blind Study
BackgroundSmokers have increased susceptibility and altered innate host defense responses to influenza virus infection. Broccoli sprouts are a source of the Nrf2 activating agentsulforaphane, and short term ingestion of broccoli sprout homogenates (BSH) has been shown to reduce nasal inflammatory responses to oxidant pollutants.ObjectivesAssess the effects of BSH on nasal cytokines, virus replication, and Nrf2-dependent enzyme expression in smokers and nonsmokers.MethodsWe conducted a randomized, double-blind, placebo-controlled trial comparing the effects of BSH on serially sampled nasal lavage fluid (NLF) cytokines, viral sequence quantity, and Nrf2-dependent enzyme expression in NLF cells and biopsied epithelium. Healthy young adult smokers and nonsmokers ingested BSH or placebo (alfalfa sprout homogenate) for 4 days, designated Days -1, 0, 1, 2. On Day 0 they received standard vaccine dose of live attenuated influenza virus (LAIV) intranasally. Nasal lavage fluids and nasal biopsies were collected serially to assess response to LAIV.ResultsIn area under curve analyses, post-LAIV IL-6 responses (P = 0.03) and influenza sequences (P = 0.01) were significantly reduced in NLF from BSH-treated smokers, whileNAD(P)H: quinoneoxidoreductasein NLF cells was significantly increased. In nonsmokers, a similar trend for reduction in virus quantity with BSH did not reach statistical significance.ConclusionsIn smokers, short term ingestion of broccoli sprout homogenates appears to significantly reduce some virus-induced markers of inflammation, as well as reducing virus quantity. Nutritional antioxidant interventions have promise as a safe, low-cost strategy for reducing influenza risk among smokers and other at risk populations.Trial RegistrationClinicalTrials.gov NCT0126972
Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study
Enhancing antiviral host defense responses through nutritional supplementation would be an attractive strategy in the fight against influenza. Using inoculation with live attenuated influenza virus (LAIV) as an infection model, we have recently shown that ingestion of sulforaphane-containing broccoli sprout homogenates (BSH) reduces markers of viral load in the nose. To investigate the systemic effects of short-term BSH supplementation in the context of LAIV-inoculation, we examined peripheral blood immune cell populations in non-smoking subjects from this study, with a particular focus on NK cells. We carried out a randomized, double-blinded, placebo-controlled study measuring the effects of BSH (N = 13) or placebo (alfalfa sprout homogenate, ASH; N = 16) on peripheral blood mononuclear cell responses to a standard nasal vaccine dose of LAIV in healthy volunteers. Blood was drawn prior to (day-1) and post (day2, day21) LAIV inoculation and analyzed for neutrophils, monocytes, macrophages, T cells, NKT cells, and NK cells. In addition, NK cells were enriched, stimulated, and assessed for surface markers, intracellular markers, and cytotoxic potential by flow cytometry. Overall, LAIV significantly reduced NKT (day2 and day21) and T cell (day2) populations. LAIV decreased NK cell CD56 and CD158b expression, while significantly increasing CD16 expression and cytotoxic potential (on day2). BSH supplementation further increased LAIV-induced granzyme B production (day2) in NK cells compared to ASH and in the BSH group granzyme B levels appeared to be negatively associated with influenza RNA levels in nasal lavage fluid cells. We conclude that nasal influenza infection may induce complex changes in peripheral blood NK cell activation, and that BSH increases virus-induced peripheral blood NK cell granzyme B production, an effect that may be important for enhanced antiviral defense responses
The importance of the exposome and allostatic load in the planetary health paradigm
In 1980, Jonas Salk (1914-1995) encouraged professionals in anthropology and related disciplines to consider the interconnections between "planetary health," sociocultural changes associated with technological advances, and the biology of human health. The concept of planetary health emphasizes that human health is intricately connected to the health of natural systems within the Earth's biosphere; experts in physiological anthropology have illuminated some of the mechanisms by which experiences in natural environments (or the built environment) can promote or detract from health. For example, shinrin-yoku and related research (which first emerged from Japan in the 1990s) helped set in motion international studies that have since examined physiological responses to time spent in natural and/or urban environments. However, in order to advance such findings into planetary health discourse, it will be necessary to further understand how these biological responses (inflammation and the collective of allostatic load) are connected to psychological constructs such as nature relatedness, and pro-social/environmental attitudes and behaviors. The exposome refers to total environmental exposures-detrimental and beneficial-that can help predict biological responses of the organism to environment over time. Advances in "omics" techniques-metagenomics, proteomics, metabolomics-and systems biology are allowing researchers to gain unprecedented insight into the physiological ramifications of human behavior. Objective markers of stress physiology and microbiome research may help illuminate the personal, public, and planetary health consequences of "extinction of experience." At the same time, planetary health as an emerging multidisciplinary concept will be strengthened by input from the perspectives of physiological anthropology.Peer reviewe
The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation
Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU-NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces
Molecular definition of group 1 innate lymphoid cells in the mouse uterus
Determining the function of uterine lymphocytes is challenging because of the rapidly changing nature of the organ in response to sex hormones and, during pregnancy, to the invading fetal trophoblast cells. Here we provide the first genome-wide transcriptome atlas of mouse uterine group 1 innate lymphoid cells (g1 ILCs) at mid-gestation. The composition of g1 ILCs fluctuates throughout reproductive life, with Eomes-veCD49a+ ILC1s dominating before puberty and specifically expanding in second pregnancies, when the expression of CXCR6, a marker of memory cells, is upregulated. Tissue-resident Eomes+CD49a+ NK cells (trNK), which resemble human uterine NK cells, are most abundant during early pregnancy, and showcase gene signatures of responsiveness to TGF-β, connections with trophoblast, epithelial, endothelial and smooth muscle cells, leucocytes, as well as extracellular matrix. Unexpectedly, trNK cells express genes involved in anaerobic glycolysis, lipid metabolism, iron transport, protein ubiquitination, and recognition of microbial molecular patterns. Conventional NK cells expand late in gestation and may engage in crosstalk with trNK cells involving IL-18 and IFN-γ. These results identify trNK cells as the cellular hub of uterine g1 ILCs at mid-gestation and mark CXCR6+ ILC1s as potential memory cells of pregnancy.This work was funded by a Wellcome Trust Investigator Award 200841/Z/16/Z, the Centre for Trophoblast Research (CTR), and the Cambridge NIHR BRC Cell Phenotyping Hub to FC, the Associazione Italiana Ricerca per la Ricerca sul Cancro (AIRC) - Special Project 5x1000 no. 9962, AIRC IG 2017 Id.19920 and AIRC 2014 Id. 15283 to LM, and Ministero della Salute RF-2013, GR-2013-02356568 to PV. IF was funded by a CTR PhD fellowship
ILC3 function as a double-edged sword in inflammatory bowel diseases
Inflammatory bowel diseases (IBD), composed mainly of Crohn’s disease (CD) and ulcerative colitis (UC), are strongly implicated in the development of intestinal inflammation lesions. Its exact etiology and pathogenesis are still undetermined. Recently accumulating evidence supports that group 3 innate lymphoid cells (ILC3) are responsible for gastrointestinal mucosal homeostasis through moderate generation of IL-22, IL-17, and GM-CSF in the physiological state. ILC3 contribute to the progression and aggravation of IBD while both IL-22 and IL-17, along with IFN-γ, are overexpressed by the dysregulation of NCR− ILC3 or NCR+ ILC3 function and the bias of NCR+ ILC3 towards ILC1 as well as regulatory ILC dysfunction in the pathological state. Herein, we feature the group 3 innate lymphoid cells’ development, biological function, maintenance of gut homeostasis, mediation of IBD occurrence, and potential application to IBD therapy
Intestinal epithelial cell endoplasmic reticulum stress promotes MULT1 up-regulation and NKG2D-mediated inflammation.
Endoplasmic reticulum (ER) stress is commonly observed in intestinal epithelial cells (IECs) and can, if excessive, cause spontaneous intestinal inflammation as shown by mice with IEC-specific deletion of X-box-binding protein 1 (Xbp1), an unfolded protein response-related transcription factor. In this study, Xbp1 deletion in the epithelium (Xbp1ΔIEC ) is shown to cause increased expression of natural killer group 2 member D (NKG2D) ligand (NKG2DL) mouse UL16-binding protein (ULBP)-like transcript 1 and its human orthologue cytomegalovirus ULBP via ER stress-related transcription factor C/EBP homology protein. Increased NKG2DL expression on mouse IECs is associated with increased numbers of intraepithelial NKG2D-expressing group 1 innate lymphoid cells (ILCs; NK cells or ILC1). Blockade of NKG2D suppresses cytolysis against ER-stressed epithelial cells in vitro and spontaneous enteritis in vivo. Pharmacological depletion of NK1.1+ cells also significantly improved enteritis, whereas enteritis was not ameliorated in Recombinase activating gene 1-/-;Xbp1ΔIEC mice. These experiments reveal innate immune sensing of ER stress in IECs as an important mechanism of intestinal inflammation
NK cells and type 1 innate lymphoid cells: partners in host defense
Innate lymphoid cells (ILCs) are effectors and regulators of innate immunity and tissue modeling and repair. Researchers have identified subsets of ILCs with differing functional activities, capacities to produce cytokines and transcription factors required for development and function. Natural killer (NK) cells represent the prototypical member of the ILC family. Together with ILC1s, NK cells constitute group 1 ILCs, which are characterized by their capacity to produce interferon-γ and their functional dependence on the transcription factor T-bet. NK cells and ILC1s are developmentally distinct but share so many features that they are difficult to distinguish, particularly under conditions of infection and inflammation. Here we review current knowledge of NK cells and the various ILC1 subset
- …