388 research outputs found

    Impact of L-carnitine and selenium treatment on testicular apoptosis in rats exposed to 2.45 GHz microwave energy

    Get PDF
    Objective: It has been suggested that electromagnetic radiation (EMR) by wireless devices (2.45 GHz) induces testicular apoptosis. We investigated if supplemental selenium (Se) and L-carnitine may reduce this adverse effect. Material: Twelve-week old maleWistar albino rats were used in this study. Twenty-four rats were equally divided into four groups which were named as: sham group, EMR-only, EMR+L-carnitine (1.5 mg L-carnitine/ kg/day) and EMR+Se (1.5 mg Se/kg/ every other day). Results: The level of Bcl-2, Bax, caspase-3 and -8 were compared and a significant difference was found between the sham and EMR-only groups (p < 0.05), and Bcl-2, Bax, caspase-3 and -8 expressions increased in the EMR-only group. The level of Bcl-2, Bax, tumour necrosis factor-alpha (TNF-α), caspase- 3 and -8 were compared and a significant difference was found between the sham and EMR+L-carnitine groups (p < 0.05) and Bcl-2, Bax, TNF-α, caspase-3 and -8 expressions increased in the EMR+L-carnitine group. The level of Bcl-2, Bax, TNF-α, caspase-3 and -8 were compared and a significant difference was found between the sham and EMR+Se groups (p < 0.05) and Bcl-2, Bax, TNF-α, caspase-3 and -8 expressions increased in the EMR+Se group. When the expression of caspase-8 was compared, a significant difference was found between the EMR-only and EMR+Se groups (p < 0.05). Caspase-8 expression decreased in EMR+Se group compared with EMR-only group. Conclusion: Electromagnetic radiation exposure resulted in testicular apoptosis in rats, mainly by the intrinsic pathways by down-regulated expression of caspase-8. Reduction in the activation of the intrinsic pathway of apoptosis was found higher with selenium administration compared with L-carnitine administration

    Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Get PDF
    The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D) finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI) system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types

    COVID-19 and Biocybersecurity\u27s Increasing Role on Defending Forward

    Get PDF
    The evolving nature of warfare has been changing with cybersecurity and the use of advanced biotechnology in each aspect of the society is expanding and overlapping with the cyberworld. This intersection, which has been described as “biocybersecurity” (BCS), can become a major front of the 21st-century conflicts. There are three lines of BCS which make it a critical component of overall cybersecurity: (1) cyber operations within the area of BCS have life threatening consequences to a greater extent than other cyber operations, (2) the breach in health-related personal data is a significant tool for fatal attacks, and (3) health-related misinformation campaigns as a component of BCS can cause significant damage compared to other misinformation campaigns. Based on the observation that rather than initiating the necessary cooperation COVID-19 helped exacerbate the existing conflicts, the authors suggest that BCS needs to be considered as an essential component of the cyber doctrine, within the Defending Forward framework. The findings are expected to help future cyber policy developments

    Scalars, Vectors and Tensors from Metric-Affine Gravity

    Get PDF
    The metric-affine gravity provides a useful framework for analyzing gravitational dynamics since it treats metric tensor and affine connection as fundamentally independent variables. In this work, we show that, a metric-affine gravity theory composed of the invariants formed from non-metricity, torsion and curvature tensors can be decomposed into a theory of scalar, vector and tensor fields. These fields are natural candidates for the ones needed by various cosmological and other phenomena. Indeed, we show that the model accommodates TeVeS gravity (relativistic modified gravity theory), vector inflation, and aether-like models. Detailed analyses of these and other phenomena can lead to a standard metric-affine gravity model encoding scalars, vectors and tensors.Comment: 13 p

    Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer

    Get PDF
    Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45S rDNA promoter. However, the DNA methylation state of the 45S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18S, 28S, 5.8S and 45S external transcribed spacer (45S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation between spliced rRNA expression levels, possibly due to changes in rRNA processing, which requires further investigation

    Constraints on North Anatolian Fault Zone Width in the Crust and Upper Mantle From S Wave Teleseismic Tomography

    Get PDF
    We present high-resolution S wave teleseismic tomography images of the western segment of the North Anatolian Fault Zone (NAFZ) in Turkey using teleseismic data recorded during the deployment period of the Dense Array for Northern Anatolia array. The array comprised 66 stations with a nominal station spacing of 7 km, thus permitting a horizontal and vertical resolution of approximately 15 km. We use the current S wave results with previously published P wave teleseismic tomography to produce maps of relative VP/VSanomalies, which we use to highlight the difference in overall composition of the three terranes separated by the northern (NNAF) and southern branches of the NAFZ. Our results show a narrow S wave low-velocity anomaly beneath the northern branch of the NAFZ extending from the upper crust, where it has a width of ∼10 km, to the lower crust, where it widens to ∼30 km. This low-velocity zone most likely extends into the upper mantle, where we constrain its width to be ≤ 50 km and interpret it as indicative of localized shear beneath the NNAF; this structure is similar to what has been observed for the NAFZ west of 32°, and therefore, we propose that the structure of the NNAF is similar to that of the NAFZ in the east. The southern branch of the NAFZ does not show a very strong signature in our images, and we conclude that it is most likely rooted in the crust, possibly accommodating deformation related to rotation of the Armutlu/Almacik Blocks situated between the two NAFZ branches

    Effects of Thiamethoxam on Vespula Germanica (F.) (Hymenoptera: Vespidae)

    Full text link
    Damage of pesticides used in agriculture on non-target organisms (except honey bees) is not sufficiently considered and neglected. Studies showed that wild bees, like honey bees, were also affected by pesticides. Wild bee species should also be protected because of their importance in pollination and biological control and also in order to protect biodiversity. Effects of pesticides on wild bees should be investigated without delay and precautions should be taken to protect the generations of wildlife. In addition, while increasing the agricultural areas, habitat for wild pollinators should be established.In this study, effect of Thiamethoxam, an agriculturally active agent in the neonicotinoid group, commonly used in agriculture fields, on the European wasp (Vespula germanica) was investigated. For this purpose, 2 molar carnation-flavored syrup in a petri dish was placed in a field where wild bees are frequent, and wild bees had got accustomed there. Trial doses were prepared with thiamethoxam dose commonly used in agricultural areas (15 ml/100 L water) and 50% dilutions of this dose (15.00, 7.50, 3.75, 1.87, 0.93, 0.46, 0.23, 0.12, 0.06 ml/100 L water) and fed in 2 molar syrup. Those who returned to the carnation petri dish after feeding were recorded at the 1st, 4th and 24th hours.At the end of the study, bees fed with 15.00, 7.50, and 3.75 ml / 100 L doses of the pesticide all died. One hour after pesticide ingestion, 84.73% of the control group and 13.33% of the bees fed with 1.87 ml / 100L dose, were alive and returned to the syrup petri dish

    Genetic Reporter System for Positioning of Proteins at the Bacterial Pole

    Get PDF
    Spatial organization within bacteria is fundamental to many cellular processes, although the basic mechanisms underlying localization of proteins to specific sites within bacteria are poorly understood. The study of protein positioning has been limited by a paucity of methods that allow rapid large-scale screening for mutants in which protein positioning is altered. We developed a genetic reporter system for protein localization to the pole within the bacterial cytoplasm that allows saturation screening for mutants in Escherichia coli in which protein localization is altered. Utilizing this system, we identify proteins required for proper positioning of the Shigella autotransporter IcsA. Autotransporters, widely distributed bacterial virulence proteins, are secreted at the bacterial pole. We show that the conserved cell division protein FtsQ is required for localization of IcsA and other autotransporters to the pole. We demonstrate further that this system can be applied to the study of proteins other than autotransporters that display polar positioning within bacterial cells.Molecular and Cellular Biolog

    Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma

    Get PDF
    Background: Basal cell carcinomas (BCCs) are common malignant skin tumors. Despite having a significant invasion capacity, they metastasize only rarely. Our aim in this study was to detect the expression patterns of the NM23-H1, NDRG1, E-cadherin, RHOGDI2, CD82/KAI1, MKK4, and AKAP12 metastasis suppressor proteins in BCCs. Methods: A total of 96 BCC and 10 normal skin samples were included for the immunohistochemical study. Eleven frozen BCC samples were also studied by quantitative real time polymerase chain reaction (qRT-PCR) to detect the gene expression profile. Results: NM23-H1 was strongly and diffusely expressed in all types of BCC. Significant cytoplasmic expression of NDRG1 and E-cadherin was also detected. However, AKAP12 and CD82/KAI1 expression was significantly decreased. The expressions of the other proteins were somewhere between the two extremes. Similarly, qRT-PCR analysis showed down-regulation of AKAP12 and up-regulation of NM23-H1 and NDRG1 in BCC. Morphologically aggressive BCCs showed significantly higher cytoplasmic NDRG1 expression scores and lower CD82/KAI1 scores than non-aggressive BCCs. Conclusion: The relatively preserved levels of NM23-H1, NDRG1, and E-cadherin proteins may have a positive effect on the non-metastasizing features of these tumors. © 2014 The International Society of Dermatology
    corecore