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Abstract The metric-affine gravity provides a useful framework for analyzing
gravitational dynamics since it treats metric tensor and affine connection as funda-
mentally independent variables. In this work, we show that, a metric-affine gravity
theory composed of the invariants formed from non-metricity, torsion and curvature
tensors can be decomposed into a theory of scalar, vector and tensor fields. These
fields are natural candidates for the ones needed by various cosmological and other
phenomena. Indeed, we show that the model accommodates TeVeS gravity (relativistic
modified gravity theory), vector inflation, and aether-like models. Detailed analyses of
these and other phenomena can lead to a standard metric-affine gravity model encoding
scalars, vectors and tensors.

Keywords Metric-affine gravity · TeVeS · Vector inflation

1 Introduction

Spacetime is a smooth manifold M(g; ()) endowed with a metric g and connection ().
Metric is responsible for measuring the distances while affine connection governs the
straightness of curves and twirling of the manifold. These two geometrical structures,
the metric and connection, are fundamentally independent geometrical variables, and
they play completely different roles in spacetime dynamics. If they are to exhibit any
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relationship it derives from dynamical equations a posteriori. This fact gives rise to an
alternative approach to Einstein’s standard theory of general relativity: metric-affine
gravity.

The standard theory of general relativity is a purely metric theory of gravity since
connection is completely determined by the metric and its partial derivatives, a priori.
This determination is encoded in the Levi–Civita connection,

�λαβ = 1

2
gλρ

(
∂αgβρ + ∂βgρα − ∂ρgαβ

)
(1)

which defines a metric-compatible covariant derivative [1].
The metric-affine theory of gravity (similar to the Palatini formalism [2,3] in philos-

ophy), which treats an metric tensor and connection as independent variables [1,4,5],
encodes a more general approach to gravitation by breaking up the a priori relation
(1). This breaking inherently reveals the new dynamic structures torsion, nonmetricity
in addition to curvature.

In this work we shall study metric-affine gravity in regard to decomposing the affine
connection into independent vectors, tensors and scalars. We shall, in particular, be
able to derive certain interactions using solely the geometrical sector with no reference
to the matter sector that contains the known forces and species. Our starting point will
be the fundamental independence of connection and metric, and the field content of
the connection in the most general case.

The outline of the paper is as follows. In Sect. 2 below we first construct the most
general ‘connection’ involving physically ‘distinct and independent’ structures, and
then form a general action containing vector and tensor fields. In Sect. 3 we give
specific applications of the derived action to vector inflation and TeVeS theory. Here
we also discuss the relation of the model to the ones in the literature. In Sect. 4 we
conclude.

2 Tensor–Vector theories from non-Riemannian geometry

An affine connection, whose components to be symbolized by ()λαβ , governs parallel
transport of tensor fields along a given curve in spacetime, and parallel transport around
a closed curve, after one complete cycle, results in a finite mismatch if the spacetime
is curved. Curving is uniquely determined by the Riemann curvature tensor

R
μ
ανβ (()) = ∂ν()

μ
βα − ∂β()

μ
να + ()

μ
νλ()

λ
βα − ()

μ
βλ()

λ
να (2)

which is a tensor field made up solely of the non-tensorial objects ()λαβ and their partial

derivatives. Notably, higher rank tensors involving (n + 1) partial derivatives of ()λαβ
are given by nth covariant derivatives of R

μ
ανβ , and hence, R

μ
ανβ acts as the seed tensor

field for a complete determination of the spacetime curvature.
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Scalars, vectors and tensors from metric-affine gravity 321

Affine connection determines not only the curving but also the twirling of the
spacetime. This effect is encoded in the torsion tensor

S
λ
αβ (()) = ()λαβ − ()λβα (3)

which participates in structuring of the spacetime together with curvature tensor.
Torsion vanishes in geometries with symmetric connection coefficients, ()λαβ = ()λβα .

The spacetime gets further structured by the notions of distance and angle if it
is endowed with a metric tensor gαβ comprising clocks and rulers needed to make
measurements. The connection coefficients and metric tensor are fundamentally inde-
pendent quantities. They exhibit no a priori known relationship, and if they are to have
any it must derive from some additional constraints. This property is best expressed
by the non-metricity tensor

Q
αβ
λ (g, ()) = ∇()

λgαβ (4)

which is non-vanishing for a general connection ()λαβ . This rank (2,1) tensor would
identically vanish if the connection were compatible with the metric. Indeed, in GR,
for instance, the constraint to relate ()λαβ to gαβ is realized by imposing ()λαβ = �λαβ from

the scratch, where�λαβ is the Levi–Civita connection (1) which respect to which metric

stays covariantly constant, ∇�
λ gαβ = 0, and hence, non-metricity vanishes identically.

Furthermore, for this particular connection, the torsion also vanishes identically since
�λαβ = �λβα by definition.

The curving and twirling of the spacetime are governed by the connection ()λαβ .
The metric tensor has nothing to do with them, and the Riemann curvature tensor (2)
contracts, with no involvement of the metric tensor, in three different ways to generate
the associated Ricci tensors of ()λαβ :

1. Rαβ (()) ≡ R
μ
αμβ (()),

2. R̂αβ (()) ≡ R
μ
αβμ (()) = −Rαβ (()),

3. Rαβ (()) ≡ R
μ
μαβ (()) = ∂α()

μ
βμ − ∂β()

μ
αμ.

The reason for having more than one Ricci tensor is that the Riemann tensor (2) pos-
sesses only a single symmetry R

μ
ανβ(()) = −R

μ
αβν(()). It is this symmetry property that

gives the relation R̂αβ(()) = −Rαβ(()) between the first two Ricci tensors above. The
third Ricci tensor Rαβ(()) does not exist in the general relativity (GR) since symmetries

of the Riemann tensor, Rμανβ(�) ≡ gμμ′Rμ
′
ανβ(�) = −Rμαβν(�) = −Rαμνβ(�) =

Rνβμα(�), admits only one single independent Ricci tensor, the Rαβ(�) defined above.
Unlike the Riemann and Ricci tensors, the curvature scalar is obtained only by

contraction with the inverse metric. Therefore, one finds the curvature scalar

R (g, ()) ≡ gαβRαβ (()) = −gαβR̂αβ (()) ≡ −R̂ (g, ()) (5)

from the first two Ricci tensors listed above. Likewise, the third Ricci tensor contracts to

R (g, ()) = gαβRαβ (()) = 0 (6)
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322 C. N. Karahan et al.

as dictated by the anti-symmetric nature of Rαβ(()). As a result, the theory possesses
two distinct Ricci tensors but a single Ricci scalar.

The action density describing matter and gravity is formed by invariants generated
by the tensor fields above plus the matter Lagrangian. A partial list includes

R, S • S, Q • Q, Q • S,

R
2, R • R, R • R,

R • S • S, R • Q • Q, R • Q • S,

R • S • S, R • Q • Q, R • Q • S,

S • S • S • S, Q • Q • Q • Q,

S • Q • Q • Q, S • S • Q • Q,

S • S • S • Q, Lm (g, (), ψ) (7)

where Lm(g, (), ψ) is the matter Lagrangian which explicitly involves the matter and
radiation fields ψ , the metric ψ and the connection (). The first line of the list consists
of mass dimension-2 invariants while the rest involve mass dimension-4 ones. Those
structures having mass dimension-5 or higher are not shown. Also not shown are the
invariants involving the covariant derivatives of the tensors. The bullet ( • ) stands
for contraction of the tensors in all possible ways by using the metric tensor, in case
needed.

The scalars in (7), most of which do not exist at all in the GR, contain novel degrees
of freedom reflecting the non-Riemannian nature of the underlying geometry. These
degrees of freedom can be explicated via the decomposition of the connection

()λαβ = �λαβ +
λαβ (8)

with respect to the Levi–Civita connection (1), which is the most natural connection
one would consider in the presence of the metric tensor. In this decomposition, 
λαβ ,
being the difference between two connections, is a rank (1,2) tensor field, and it is the
source of various non-Riemannian invariants listed in (7). To this end, in response to
(8), the Ricci curvature tensor Rαβ(()) splits as

Rαβ (()) = Rαβ (�)+ Rαβ (
) (9)

where Rαβ(�) ≡ Rαβ(�) is the Ricci curvature tensor of the Levi–Civita connection,
and

Rαβ = ∇μ
μβα − ∇β
μμα +
μμν

ν
βα −


μ
βν


ν
μα (10)

where ∇α ≡ ∇�
α is the covariant derivative of the Levi–Civita connection �λαβ . This

tensor is a rank (0,2) tensor field generated by the tensorial connection 
λαβ alone.
It is actually not a true curvature tensor as it is generated by none of the covariant
derivatives ∇() or ∇� . It is a ‘quasi’ curvature tensor.
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Scalars, vectors and tensors from metric-affine gravity 323

In response to (8), the purely non-Riemannian Ricci tensor Rαβ(()) takes the form

Rαβ (()) = ∂αVβ − ∂βVα = ∇�
α Vβ − ∇�

β Vα (11)

wherein the second equality, which ensures that Rαβ(()) is a rank (0,2) anti-symmetric
tensor field, follows from the symmetric nature of the Levi–Civita connection, �λαβ =
�λβα . It is obvious that Rαβ(()), in the form (11), is nothing but the field strength tensor

Rαβ (()) ≡ V(−)αβ ≡ ∂αVβ − ∂βVα (12)

of the Abelian vector

Vα = 
μαμ (13)

which is of purely geometrical origin. Consequently, purely non-Riemannian curvature
tensor Rαβ(()) plays a strikingly different role compared to Rαβ(()) in that it directly
extracts a vector field out of the underlying geometry.

As a result of (8), the torsion and non-metricity tensors

S
λ
αβ (()) = 
λαβ −
λβα (14)

Q
αβ
λ (g, ()) = 
αλμgμβ +


β
λμgαμ (15)

reduce to plain algebraic expressions in terms of 
λαβ .

Having explicated the 
λαβ dependencies of the fundamental tensor fields, it is
time to ask what the tensorial connection actually is and what information about
the geometry can be extracted from it. In other words, 
λαβ , which embodies non-
Riemannian ingredients of the underlying geometry, must be refined in order to extract
the novel geometrical degrees of freedom it contains. As the first option to think of, it
is possible that there exist a fundamental rank (1,2) tensor field δλαβ , and the connection


λαβ equals just this fundamental tensor field. Though this is possible, at present there
is no indication for such higher spin fields, and thus, it is convenient to leave this
possibility aside. The other option to think of is that 
λαβ could be made up of lower
spin fields, i. e. vectors, spinors and scalars. To this end, given its rank (1,2) nature, it is
obvious that the tensorial connection must be decomposable into vector fields, which
might be fundamental fields or composites formed out of spinors or scalars. In general,

λαβ possesses 64 independent elements, and hence, it should be fully parameterizable
by 3 independent vector fields, whose nature will be further analyzed in the sequel.
One of the vectors is already defined by the contraction Vα in (13). The other two

Uα = 
μμα (16)

and

Wα = gμν
αμν (17)
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are conveniently defined through the remaining two distinct contractions of
λαβ . These
two vectors, unlike Vα , do not possess an immediate kinetic term, and if they are to
have any, it must come from the invariants involving the gradients of the fundamental
tensors in (7).

Given the metric tensor gαβ , Vα in (13), Uα in (16), and Wα in (17), the tensorial
connection 
λαβ can be algebraically decomposed as


λαβ = δλαβ + avV
λgαβ + bvVαδ

λ
β + cvδ

λ
αVβ

+auU
λgαβ + buUαδ

λ
β + cuδ

λ
αUβ

+awW
λgαβ + bwWαδ

λ
β + cwδ

λ
αWβ

+ 1

M2

∑ (
νxyV

λ + υxyU
λ + ωxyW

λ
)
XαYβ (18)

because of its higher spin assuming that a fundamental rank (1,2) tensor field δλαβ does
not exist at all. The sum in the last line runs over X,Y = V,U,W, and M is a mass scale
expected to be around the fundamental scale of gravity, MPl . The decomposition
necessarily involves linear and trilinear combinations of the vectors. There cannot
exist any other acceptable combinations of the vectors. The expansion is unique in
structure. However, one notices that all three defining relations (13), (16), (17) are
algebraic in nature, and thus, the dimensionless coefficients a’s, . . ., ω’s cannot be
prohibited to involve dressing factors of the form Iδ/Mδ where δ ≥ 0 and I is an
invariant generated by bilinear contractions of the vectors V, U, W. These dressing
factors introduce invariants with higher and higher mass dimension. The defining
relations (13), (16) and (17) are too few to determine all the expansion coefficients in
(18). Therefore, all one can do is to express nine of the coefficients in terms of the
rest. For instance, the coefficients in the linear sector can be expressed in terms of
those in the trilinear sector, leaving ν’s, υ’s and ω’s undetermined, and accordingly,
all the invariants in (7) can be expanded via (18) to determine the dynamics of Vα ,
Uα , and Wα . Nevertheless, as clearly suggested by (18), the main effect of trilinear
terms is to generate quartic and higher order interactions of vectors. Putting emphasis
on quadratic interactions, the trilinear terms can thus be left aside though they can be
straightforwardly included in the formulae below by processing the complete 
λαβ in
(18). Proceeding thus with linear terms in (18), one finds

av = cv = au = bu = bw = cw = − 1

18

bv = cu = aw = 5

18
(19)

for which 
λαβ gets decomposed linearly in terms of Vα , Uα and Wα .
Given the decomposition in (18) of the tensorial connection, all the invariants in

(7) can be expressed in terms of Vα , Uα and Wα to determine their dynamics as vector
fields hidden in the non-Riemannian geometry under consideration. To start with, the
curvature scalar R(g, ()), as follows from (9), is composed of the GR part R(g, �) and
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Scalars, vectors and tensors from metric-affine gravity 325

the quasi curvature scalar gαβRαβ(
) ≡ R(g,
). In response to the linear part of
the decomposition of 
λαβ in (18), the latter takes the form

R (g,
) = ∇ · (W− U)+ 1

18

(
V · V+ U · U+ W · W

−4V · U− 4V · W+ 14U · W
)

(20)

which shows that a term linear in R(g, ()) in the gravitational Lagrangian yields the
Einstein-Hilbert term R(g, �) in GR plus a theory of three vector fields in which each
vector develops a ‘mass term’ and mixes with the others quadratically. The vectors do
not acquire a kinetic term from R(g, ()) since the first term at the right-hand side of
(20), the divergence of Wα−Uα , does not contribute to dynamics as it can be integrated
out of the action by using

√−g∇ · (W − U) = ∂α(
√−g(Wα − Uα)). One, however,

notices that this term becomes important in higher curvature terms like R
2(g, ()).

From (11) it is already known that Rαβ(()) is the field strength tensor of the vector
field Vα . Then the associated invariant in (7) becomes

R • R = V(−)αβV(−)αβ (21)

which is nothing but the kinetic term of the Abelian vector Vα .
Corresponding to the decomposition in (18), the torsion and non-metricity tensors

take the explicit form

S
λ
αβ = 1

3

(
Vαδ

λ
β − δλαVβ

)
− 1

3

(
Uαδ

λ
β − δλαUβ

)
, (22)

Q
αβ
λ = 1

9

(
5Vλgαβ − Vαδβλ − δαλV

β

−Uλgαβ + 2Uαδβλ + 2δαλU
β

−Wλgαβ + 2Wαδβλ + 2δαλW
β
)
, (23)

and thus, the related invariants in (7) read as

S • S = 2 (V · V+ U · U− 2V · U), (24)

Q • Q = 2

9

(
22V · V+ 7U · U+ 7W · W+ 20V · U

+20V · W+ 14U · W
)
, (25)

Q • S = 4

3

(
2V · V+ U · U− 3V · U− V · W+ U · W

)
. (26)

This completes the decomposition of the quadratic invariants of the vector fields as
generated by the curvature, torsion and non-metricity tensors. It is clear that these
invariants provide a kinetic term only for Vα; the other two vectors, Uα and Wα , acquire
no kinetic term from any of the invariants in (7). Nevertheless, a short glance at (22)
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and (23) immediately reveals that the invariants formed by the gradients of curvature,
torsion and non-metricity tensors can generate the requisite kinetic terms. Specifically,
from (22) it is found that

Dαβ = ∇()
λS
λ
αβ ⊃ −1

3
V(−)αβ + 1

3
U(−)αβ (27)

where the terms O(
2) are suppressed on the basis of unnecessity. The first term
at the right-hand side is the field strength tensor of Vα as mentioned in (11) and
(12). The second term is new in that it is the field strength tensor of the Uα field.
Therefore, divergence of torsion tensor generates the requisite kinetic term for Uα ,
and the associated invariant

D • D ⊃ 1

9

(
V(−)αβV(−)αβ + U(−)αβU(−)αβ − 2V(−)αβU(−)αβ

)
(28)

encodes the kinetic terms of Vα and Uα as well as their kinetic mixing. One notices
that, not only the divergence operation (27) but also

gρα∇()
ρS
λ
αβ = −gρα∇()

ρS
λ
βα (29)

give contributions to the kinetic terms of vectors with similar structures as (28).
The candidate kinetic terms of Vα in (21), and the kinetic term of Uα in (28) are of

the form expected of an U (1) invariance. Of course, such an invariance is explicitly
broken by the ‘mass terms’ generated by curvature, torsion and non-metricity tensors.
This is not the whole story, however. The kinetic terms generated by the derivatives
of the non-metricity tensor in (23) also violate possible U (1) invariance suggested by
(21) and (28). To see this, one notes that

N
αβ = gρλ∇()

ρQ
αβ
λ ⊃ 1

9

(
5∇ · Vgαβ − V(+)αβ

−∇ · Ugαβ + 2U(+)αβ

−∇ · Wgαβ + 2W(+)αβ
)

(30)

where

V(+)αβ ≡ ∇αVβ + ∇βVα (31)

is the symmetric counterpart of the anti-symmetric field strength tensor V(−)αβ in (12).
This definition holds also for the other vectors. Then the invariant generated by (30)
reads as

N • N ⊃ 1

162

3∑

i, j=1

A(+)iαβK
αβμν
i j A(+)jμν (32)

where Ai ∈ (V,U,W), and Kαβμνi j is the (i, j)th entry of the matrix-valued tensor
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Scalars, vectors and tensors from metric-affine gravity 327

Kαβμν =
⎛

⎜
⎝
Kαβμν11 Kαβμν12 Kαβμν13

Kαβμν21 Kαβμν22 Kαβμν23

Kαβμν31 Kαβμν32 Kαβμν33

⎞

⎟
⎠ (33)

where

Kαβμν11 = 202gαβgμν + gαμgβν + gανgβμ

Kαβμν12 = Kαβμν21 = Kαβμν13 = gαβgμν − 2gαμgβν − 2gανgβμ

Kαβμν22 = Kαβμν23 = Kαβμν32 = Kαβμν33 = −2gαβgμν + 4gαμgβν + 4gανgβμ

which describes the kinetic mixing among the three vector fields. As for the divergence
of torsion in (28), one notices that, not only the divergence operation (30) but also

∇()
αQ

αβ
λ = ∇()

αQ
βα
λ (34)

give contributions similar to that in (32). In addition to these, contraction of

∇()
Q • ∇()

S = 0 (35)

due to symmetry conditions.
Having done with the decomposition of various invariants in terms of the vector

fields V, U and W, we now turn to analysis of interactions in such a non-Riemannian
setup. The most general action functional describing ‘gravity’ and ‘matter’ is of the
form

I =
∫

d4x
√−g

{
L

(
R,R,S,Q

)
+ Lm (g, (), ψ)− V0

}
(36)

which contains action densities for geometric and material parts, respectively. V0
stands for the vacuum energy (containing the bare cosmological term fed by the geo-
metrical sector), and ψ stands for matter and radiation fields, collectively. Neither the
geometrical L nor the matter Lagrangian Lm contains any constant energy density; all
such energy components are collected in V0. The geometrical part reads explicitly as

L = 1

2
M2

Pl

(
R + cSS • S + cQQ • Q + cQSQ • S

)

+c′
S∇()

S • ∇()
S + c′

Q∇()
Q • ∇()

Q + c′
QS∇()

Q • ∇()
S

+cR2R
2 + cR RR • R + cR RR • R + O

(
1

M2
Pl

)

(37)

where we have discarded terms O(1/M2
Pl). Moreover, we have discarded higher-

derivative terms �()
R and the like. c’s are all dimensionless couplings. The mass
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328 C. N. Karahan et al.

dimension-2 terms are naturally scaled by the fundamental scale of gravity, MPl . One
notices that R2 and R•R contain higher-curvature terms R(g, �)2 and Rαβ(�)Rαβ(�),
respectively. Indeed, leaving aside the non-dynamical terms, one can show that

R
2 (()) ⊃ R(g, �)2 +

(
(∇.W)2 − 2(∇.W)(∇.U)+ (∇.U)2

)
(38)

and

R (()) • R (()) ⊃ R2(g, �)+ Rμν(g, �)R
μν(g, �)+ 1

648

(
− 4(∇.V)2 + 162(∇.U)2

+ 167(∇.W)2 − 330(∇.U)(∇.W)− 6(∇.V)(∇.U)+ 4(∇.V)(∇.W)
+ 16∇μVν∇νVμ + 24∇μVν∇νUμ + 9∇μUν∇μUν + 10∇μVνV(−)μν
− 18∇μVνU(−)μν − 8∇μVνW(+)μν + 8∇μUνU(−)μν − 6∇μUνW(+)μν
+ 2∇μWνW(+)μν

)
(39)

wherein the GR-related parts are seen to involve higher-derivative interactions. In this
sense, the GR-part (the terms R2(g, �) and Rμν(g, �)Rμν(g, �) ) brings forth ghosts.
Clearly, these terms must be absent (cR2 and cR R must vanish) if such ghosty contribu-
tions in GR are to be avoided. The remaining terms, after using their decompositions
in terms of the vector fields V, U and W, give rise to the action

I =
∫

d4x
√−g

{
1

2
M2

Pl R + Lm (g, (), ψ)− V0

}

+
∫

d4x
√−g

{
cV VV

(−)αβV(−)αβ + cUUU
(−)αβU(−)αβ + cV UV

(−)αβU(−)αβ

+V(+)αβ k
αβμν
V V V(+)μν + U(+)αβ k

αβμν
UU U(+)μν + W(+)αβ k

αβμν
W W W(+)μν + V(+)αβ k

αβμν
V U U(+)μν

+V(+)αβ k
αβμν
V W W(+)μν + U(+)αβ k

αβμν
U W W(+)μν + M2

Pl

(
1

2
aV VV

αVα + 1

2
aUUU

αUα

+ 1

2
aW WW

αWα + aV UV
αUα + aV WV

αWα + aU WU
αWα

)}
(40)

where the first integral at the right-hand side is precisely the Einstein–Hilbert action
in GR (plus the contribution of matter and radiation), and the second integral pertains
to a theory of three vector fields in a spacetime with metric gαβ . The Einstein-Hilbert
action above would receive contributions from higher-curvature (and thus typically
ghosty) terms had we kept in (37) the R

2 and R • R terms ( given in [38) and (39)].
In essence, under the decomposition in (18), the non-Riemannian gravitational the-

ory in (37) reduces to a tensor-vector theory of the type in (40) (leaving aside the matter
sector Lm(g, (), ψ)). One notices that the general connection ()λαβ can directly couple
to matter fields as encoded in the matter Lagrangian. According to types of the matter
fields, these couplings give rise to additional structures (like hyper-momentum) which
involve torsion and non-metricity. In [6,7], various effects of the general connection
on the matter sector are analysed in detail. The vector part of the action is written in

123



Scalars, vectors and tensors from metric-affine gravity 329

a rather generic form by admitting that various terms listed above plus similar ones
coming, for example, from (29) and (34) give rise to, at the quadratic level, the struc-
tures in (40) with dimensionless coefficients cV V , . . . , aU W . These coefficients can be
expressed as linear combinations of the coefficients weighing individual contributions.

The tensor-vector theory in (40) has been obtained for a general setup involving
curvature, torsion and non-metricity tensors exhaustively. The theory is GR plus a
theory of three vectors V, U and W. Any constraint or selection rule imposed on the
non-Riemannian geometry results in a more restricted theory. It could thus be useful
to discuss certain aspects of (40) here:

– Theory consists of three vector fields V, U and W. The vector action contains
two types of kinetic terms: ones with X(−)αβ and those with X(+)αβ . The V and U
possess both types of kinetic terms while W possesses only the second type i. e.
W(+)αβ . The X(−)αβ and hence the corresponding kinetic terms obviously possess an
Abelian invariance. However, there is no such invariance for the kinetic terms
involving X(+)αβ . Therefore, the vector fields contained in (40) are not associated
with a gauge theory; they are not vectors originating from need to realize a local
U(1) invariance. The coefficients cV V , . . . , kαβμνU V , which seem being left arbitrary,
can actually be fixed in terms of the coefficients of individual terms in (37) which
contribute to that particular structure. The kinetic terms, both X(−)αβ and X(+)αβ type,
receive contributions from various structures, as addressed before. In particular,
contributions of the alternative structures given in (29) and (34) must also be
included in forming the vector action in (40).

– A highly crucial aspect concerns the signs of the coefficients cV V , . . . , kαβμνU V in
the kinetic part of the vector action. The kinetic terms of V, U and W must have
the correct sign required of a ghost-free theory. Indeed, any sign-flip in the kinetic
terms causes vector ghosts to show up in the spectrum. The various coefficients in
(37) must comply with this requirement.

– The vectors exhibit not only the kinetic mixings X(−)αβ Y
(−)αβ and X(+)αβ Y

(+)αβ but
also mass mixings of the form XαYα , as shown in the last line of the vector action.
Their masses and mixings are proportional to MPl with respective coefficients
aV V , . . . , aU W . In {V,U,W} basis their mass-squared matrix reads as

1

2
M2

Pl

⎛

⎝
aV V aV U aV W

aV U aUU aU W

aV W aU W aW W

⎞

⎠ (41)

each entry of which can be extracted from (37) as

aV V = 1

18
+ 2cS + 44

9
cQ + 8

3
cQS,

aUU = cW W + 2cS + 4

3
cQS,

aW W = 1

18
+ 14

9
cQ,
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aV U = −1

9
− 2cS + 20

9
cQ − 2cQS,

aV W = −1

9
+ 20

9
cQ − 2

3
cQS,

aU W = 7

18
+ 14

9
cQ + 2

3
cQS . (42)

It is the eigenvalues of (41) that determine the light and heavy vector spectrum in
the theory. For having a stable theory free from tachyons, the eigenvalues of (41)
must each be positive semi-definite. This puts stringent constraints on the elements
aV V , . . . , aU W (See Appendix B for further details.). If off-diagonal entries are
small i. e. if cS , cQ and cQS are chosen appropriately then all three vector bosons
weigh MPl/3

√
2. Alternatively, if the mixings are sizeable, or equivalently, if all

entries of (41) are of similar size then there will exist two light and one heavy
vectors in the spectrum. Depending on the hierarchy of the couplings, there could
exist just one light state instead of two [8]. In any case, it is with the hierarchy
of the couplings that the vector boson spectrum can exhibit different hierarchies.
Needless to say, the intra-hierarchy of the mass matrix entries aV V , . . . , aU W

is determined by the couplings cS , cQ and cQS via the relations (42). Actually,
having the vector fields with masses around MPl should come by no surprise; the
underlying theory (37) is a pure gravity of non-Riemannian structure, and the mass
scale in the theory is automatically fixed by the fundamental scale of gravity MPl .
However, the statement ‘a Planckian-mass vector field’ depends crucially on what
we mean by the vector field: Is it fundamental or is it a composite structure? We
will discuss answers and consequences of these questions in the sequel.

– As is obvious from the general procedure, reduction of the non-Riemannian gravity
gives rise to GR plus extra degrees of freedom represented by the vector fields in
(40). These extra degrees of freedom can have astrophysical and cosmological
implications, and can give rise to observable phenomena at high-energy particle
colliders. These fields may form an invisible sector which couples to known matter
via Higgs or vector boson portals. We shall discuss some of their cosmological
effects in the next section.

– The framework we have reached in (40) is a rather general one in that we have
imposed no condition on metric, connection and any other geometro-dynamical
quantity. Imposition of certain selection rules, though seems to cause loss of gener-
ality, does actually prove highly useful for extracting information about behavior
of the system in certain reasonable situations. Here we shall discuss two such
limiting cases:

– Symmetric Connection: We first discuss the possibility of symmetric connection
i. e. ()λαβ = ()λβα . The prime implication of this selection rule is that the torsion

tensor identically vanishes, S
λ
αβ = 0. This statement is equivalent to imposing

Vα = Uα, (43)

as is manifestly suggested by the decomposition of
λαβ in (18). This constraint is
seen to nullify the invariants S · S and S · Q, in agreement with vanishing torsion.
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This particular relation between V and U reduces the vector action in (40) into a
theory of two vectors: the V and W. The structure remains similar to that in (40) yet
various terms containing V and U merge together to give more compact relations.

– Antisymmetric Tensorial Connection: This time we consider the relation
λαβ =
−
λβα for the tensorial connection not for ()λαβ . Actually, since �λαβ is symmetric

the connection ()λαβ possesses no obvious symmetry under the exchange of α and β.
The prime implication of the anti-symmetric
 is that the geodesics of test bodies
remain as in the GR. This, however, does not mean that one can eliminate the
non-Riemannian effects. The reason is that the geodesic deviation, which involves
the Riemann tensor R

α
μβν , directly feels the non-GR components of the curvature

tensor. In the language of the expansion (18), anti-symmetric 
λαβ gives

Vα = −Uα and Wα = 0 (44)

which reduces thus the vector action in (40) to theory of a single vector field V.

Here we have highlighted certain salient features of the Tensor–Vector theory of
(40) in regard to various structures and limiting cases the vector part can take.

3 Applications to cosmology

Up to now, we have constructed a general action which consists of all possible vector
and tensor fields. In addition to this, we have given two limiting cases as symmetric and
antisymmetric tensorial connection. In next two subsections, by using antisymmetric
tensorial connection limit and some constraints, we obtain two well-known actions
which are defined in modified gravity theories. These are TeVeS gravity and vector
inflation.

3.1 TeVeS gravity

In spite of its great success in describing the solar system, general relativity (GR)
fails to account for dynamics at galactic scales without postulating a large amount of
cold dark matter (CDM)—non-baryonic, non-relativistic, electrically neutral, weakly
interacting particles of weak-scale masses [9]. The asymptotic flatness of the galaxy
rotation curves, which occurs towards galaxy outskirts involving extremely small
accelerations, manifestly disagrees with predictions of the GR unless the galactic
region is populated by non-shining, and hence, astrophysically unobservable CDM.

Apart from this, there are problems with structure formation: with the baryonic
matter alone, the large-scale structure as we observe it would not have been formed
yet if gravity is described by GR. Indeed, GR demands large amounts of ‘dark compo-
nents’ (23 % ‘dark matter’ for structure formation and 73 % ‘dark energy’ for late-time
inflation) to be able to account for the mounting cosmo-physical precision data (com-
ing from observations on microwave background [10], large scale structure [11], and
supernovae [12]). However, the way these dark components enter into gravitational
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field equations does not involve their origins and nature; they are treated as ‘fluids’
with right density and equation of state. Nevertheless, the positron excess reported
by recent observations [13,14] on cosmic rays, if interpreted to come from decays or
annihilations of dark matter, can be taken as indirect signals of dark matter (though
there are alternative arguments in favor of astrophysical sources [15,16] of positron
excess).

This ‘dark paradigm’ necessitated by GR can in fact be evaded if an alternative
description of Nature takes over at extremely small accelerations and curvatures. This
is what has been postulated by Milgrom [17,18], who replaced Newton’s second law
of motion with

μ

( |a|
a0

)
a = −∇�N (45)

where �N is the gravitational potential, μ(x) � 1(x) for x 	 1(x 
 1), and
a0 � 10−10 m/s2 is an acceleration scale appropriate for galaxy outskirts [19]. This
proposal, despite its empirical success, had to wait for the relativistic generalizations
of [20–23] to become a complete, alternative theory of gravitational interactions (see
also the review [24]). The relativistic generalization, dubbed as tensor–vector–scalar
(TeVeS) theory of gravity, involves the geometrical fields Vμ and φ in addition to the
metric tensor gμν such that, while the matter sector involves gμν only, the gravitational
sector involves

g̃μν = e2φgμν − 2 sinh(2φ)AμAν (46)

whose action can be generalized to incorporate aether effects [25–27], too. Various
astrophysical and cosmological phenomena exhibit observable signatures of TeVeS
[28–43].

TeVeS is essentially a bi-metrical gravitational theory where matter and gravity are
distinguished by the metric fields they operate with. It is thus natural to expect a refor-
mulation in bi-metrical language [44,45] wherein certain interactions and properties
follow deductively.

The material produced in the last section is general and detailed enough to have a
re-look at the TeVeS gravity. In this section we will argue that TeVeS type extended
gravity theories do naturally follow from the non-Riemannian theories of the form
(37) under the decomposition (18).

– To establish contact with TeVeS gravity, it is necessary to discuss first the function
μ defined in (45). In relativistic formulation, μ is a non-dynamical field in the
action. Variation of the action with respect to μ fixes ‘gradient’ of its potential
dV (μ)/dμ in terms of the remaining terms in which μ appears at least linearly.
Basically, μ must multiply the kinetic term of (scalars or vectors) so that its force
dV (μ)/dμ is fixed in terms of the field gradient-squareds (actually the kinetic
terms of the fields) in accord with the requirements of the MOND. In summary,
the MOND relation (45) for μ arises from the equation of motion for μ (to be
solved via dV (μ)/dμ in terms of the kinetic terms of the fields in the spectrum).
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The relativistic theory of [22,23] requires that μ should be non-dynamical, that
is, it should have no kinetic term. Therefore, the Lagrangian of μ can be directly
constructed from couplings in the action (40). We do this as follows:

– First, we postulate that the vacuum energy density V0 in (36) and (40) can actually
be decomposed as

V0 = V (μ)+
V (47)

where 
V is a constant additive energy density while V varies with μ. At this
stage μ is a hypothetical parameter having no solid physical basis.

– We further postulate that the coefficients cV V , . . . , kαβμνU V weighing the individual
kinetic terms in the vector part of the action (40) do actually depend on the para-
meter μ at least in a linear fashion. In fact, it is not necessary to make all these
constants vary with μ; the μ dependence of one single parameter suffices.

– Under these instructed changes for ‘creating’ or ‘explicating’ the non-dynamical
field μ, the action (40) becomes essentially the Tensor–Vector theory of [25–27].
This theory is obtained by eliminating the scalar field through the constraints on
the biometrical theory of [22,23], and is shown to be a viable replacement for
cold dark matter. As an aether theory, it works as good as the model in [22,23] as
far as the MOND-change of gravity is concerned. The main distinction between
the theory obtained here and that of [25–27] is that the model here consists of
three vectors in the most general case. If one specializes to cases like (43) or (44),
however, the model obtained here gets closer to the aether theory of [25–27], which
is shown therein to be an alternative to the cold dark matter.

Consequently, the Tensor–Vector theory in (40) provides a general enough frame-
work (in terms of parameters and number of vector fields) for generating the TeVeS
gravity of [17,18,20–24] through the analyses in [25–27]. It should be kept in mind
that, the TeVeS gravity of [20–23] is based on a biometrical theory where the geometri-
cal sector proceeds with metric involving a scalar field, vector field and the metric field
used by the matter Lagrangian. The theory in the present work, however, provides a
compact approach to TeVeS gravity via the decomposition of the tensorial connection
in (18).

– At this point, one may wonder why we are dealing with the Tensor–Vector theory
of [25–27] instead of the true TeVeS gravity of [20–24]. Actually, as we will
shown below, the action (40) naturally contains the true TeVeS gravity. To this
end, the right question to ask concerns the vector fields themselves: Are they
fundamental vector fields or composites of some other fields? They each could
be of either nature. Whatever their structure, however, they must be true vectors
on the spacetime manifold such that their vector property must not depend on
the connections ()λαβ or �λαβ or 
λαβ . The reason is that the vectors themselves are
just parameterizing the connection via (18), and hence, their independence from
the connection is required by the logical consistency of the construction. This
constraint prohibits all structures but

Vα = a1Vα + a0

MPl
∂αφ (48)
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where Vα is a fundamental vector, and φ is a fundamental scalar field. The vector
property of Vα is obvious. Why the φ-dependent part is a vector is guaranteed by
the fact that ∇(any connection)

α φ = ∂αφ, and hence, it is a vector on the manifold
independent of the connection; may it be ()λαβ or �λαβ or some other structure.
Obviously, if φ is to be a new degree of freedom (not a scalar formed form Vα
itself) then it is necessary to reduce the degrees of freedom contained in Vα by one
unit. Any ‘gauge constraint’ such as ∇ · V = 0 proves sufficient for this purpose.
Under these conditions, the expansion (48) operates on each of the vectors V, U
and W with their respective scalar fields.
It is obvious that replacement of (48) and similar relations for Uα and Wα into the
vector action in (40) will yield a general Tensor–Vector–Scalar theory of gravity.
The main difference from [20–24] will be the number of vectors and scalars in
the theory. The difference will be the dependence of the action on the scalars:
Only the gradients of scalars are involved. The scalars themselves do not enter the
action. Nevertheless, one arrives at a Tensor–Vector–Scalar theory of gravity, and
the theory is parametrically and dynamically wide enough to cover the standard
TeVeS gravity.

– As a concrete case study, here we shall discuss the reduced theory after imposing
the condition (44). The action (40) reduces to

I =
∫

d4x
√−g

{
1

2
M2

Pl R + Lm (g, (), ψ)− V0

+cV VV
(−)αβV(−)αβ + V(+)αβ k

αβμν
V V V(+)μν

+1

2
M2

PlaV VV
αVα

}
(49)

where the terms involving V and U in (40) combine to form the over-lined coeffi-
cients in here. The terms involving W in (40) are all nullified in accord with (44).
For instance, one directly finds

aV V = 1

3
+ 8cS + 2cQ + 8cQS (50)

form (42). The reduced theory in (49) is precisely the one in [25–27] except
for the absence of quartic-in-V terms. The couplings in and dynamics of the two
theories can be matched via the terms involved in two cases. This situation becomes
especially clear after using VαVα = −1 in the tensor-vector theory of [25–27].
Now, it is time to analyze (49) under the decomposition (48). One finds

I =
∫

d4x
√−g

{
1

2
M2

Pl R + Lm (g, (), ψ)− V0

+ a2
1cV V V (−)αβV (−)

αβ + a2
1 V (+)

αβ k
αβμν
V V V (+)

μν

+ 1

2
M2

Pla
2
1aV V V αVα + MPla1a0aV V V α∂αφ
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+a2
0aV V ∂

αφ∂αφ + O
(

1

MPl

)}
(51)

from which it is seen that setting V0 ≡ V (μ) + 
V and a0 = ā0μ essentially
suffices to reproduce the results of TeVeS gravity [22–24]. Setting V αVα = −1
as a constraint on the vector field, the mass term of V α in (51) just adds up to the
vacuum energy V0.

Before closing this section we comment on MOND. The MOND theory (or its
relativistic realization TeVeS) has been put forth as an alternative to the Dark Matter
paradigm. As for any model, there are phenomena for which TeVeS cannot give a
satisfactory explanation. Indeed, while it can explain flat rotation curves with no need
to Dark Matter, it has phenomenological shortcomings related to explanations of the
other DM evidences such as bullet cluster. Nevertheless, like the dark matter paradigm
all these models are under theoretical and experimental investigation, and one can find
better realizations in terms of various constraints. The non-Riemannian origin we
discuss is not special to TeVeS or any other specific modeling; it holds in general
and its parameter space can be constrained by astrophysical observations or collider
experiments.

3.2 Vector inflation

According to the standart big bang cosmology, which is defined by using Friedmann–
Robertson–Walker (FRW) metric, universe is homogeneous and isotropic on large
scales [46,47]. In addition to this, observations of Hubble in redshifts of galaxies
shows that universe is expanding. To understand dynamical properties of expansion,
the solutions of Einstein equation for FRW metric are required. Combination of these
solutions is given by

ä

a
= − 4π

3M2
pl

(ρ + 3p) (52)

as ρ implies energy density and p is pressure and a is scale factor. In the light of
Eq. (52) one can think that universe expands by decelerating in case of (ρ + 3p) > 0.
However, this deceleration doesn’t solve some problem of standart big bang cosmology
such as flatness, horizon and so on. To solve these problems, accelerated expansion of
universe in early stage is treated instead of decelerated one i.e (ρ + 3p) < 0 and this
type of expansion is called “inflation”. Inflation is generally driven by scalar fields to
prevent anisotropy occurred in higher spin fields [48]. However, scalar inflation models
have fine-tuning problem and also scalar bosons which is base of these models aren’t
observed by experiments [49]. Therefore, vector inflation model is considered instead
of scalar inflation model. [50,51] Also p-forms inflation model is also considered in
literature [52].

Vector inflation was firstly proposed in [50] by using spacelike vector fields. In
Ford’s paper vector fields gave anisotropic solution of inflation. So, instead of spacelike
vector fields, it was shown that timelike vector fields under some constraints of vector
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field potential give rise to desired inflationary expansion [53–55]. The other problems
vector fields have can be solved by using a triplet of mutually orthogonal vector fields
and non- minimally coupling.

In this section, we show that after a regularization ,the action (40) obtained by
using the anti-symmetric connection constraint give the same action in [53–55] which
is most general action of vector inflation theory.

Combining the abelian and non-abelian part of vector field and defining new dimen-
sionless coefficients lead to the action (leaving aside the matter sector):

I =
∫

d4x
√−g

{
1

2
M2

Pl R + 1

2
καβμν∇αVβ∇μVν + V (ξ)

}

(53)

where

V (ξ) = 1

2
M2

PlaV V V αVα (54)

and

καβμν = κ1gαβgμν + κ2gαμgβν + κ3gανgβμ (55)

ξ = V αVα , and κ1, κ2, κ3 are random coefficients coming from general action.

κ1 = 44

18
c

′
Q,

κ2 = 8c
′
s + 2c

′
Q

18
,

κ3 = 2c
′
Q − 8c

′
s

18
(56)

Assigning suitable values (by excluding ones leading to linear instabilities or
negative-energy ghosts) to these coefficients reproduce the same results with the action
of general vector inflation in [53–55].

4 Conclusion

Metric-affine gravity generalizes the GR by accommodating an affine connection that
extends the Levi–Civita connection. The tensorial part of the connection, under general
conditions, can be decomposed into three independent vector fields (and a fundamental
rank (1,2) tensor field, if any) which can be fundamental fields or gradients of some
scalar fields. By this way the vector, scalar and tensor fields come into play when the
metric-affine action is decomposed accordingly. The resulting theory is rather general.
By imposing judicious constraints, theory can be reduced to more familiar ones like
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TeVeS gravity, vector inflation or aether-like models, in general. In the text we have
given a detailed discussion of the TeVeS gravity and vector inflation.

From this work, one concludes that metric-affine gravity is rich enough to sup-
ply various vector and scalar fields needed in cosmological phenomena. Analyses of
various effects may lead to a standard model of metric-affine gravity.
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suggestions. A. A. thanks Selin Soysal for discussions. We would like to thank V. Vitagliano and very
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Appendix A: Contraction tensors

Contraction of tensors becomes a tedious operation as their rank becomes larger and
larger. Already at the rank-3 level, there arise various possibilities in contracting the
indices. Indeed, if one defines

A • B ≡ A
λ
αβ�

αβμν
λρ B

ρ
μν (57)

the contraction tensor �αβμνλρ is found to have the most general form

�
αβμν
λρ = gλρ

(
gαβgμν ⊕ gαμgβν ⊕ gανgβμ

)

⊕ δαλ
(
gβνδμρ ⊕ gβμδνρ ⊕ gμνδβρ

)

⊕ δ
β
λ

(
gανδμρ ⊕ gαμδνρ ⊕ gμνδαρ

)

⊕ δ
μ
λ

(
gβνδαρ ⊕ gαβδνρ ⊕ gανδβρ

)

⊕ δνλ
(
gβμδαρ ⊕ gαβδμρ ⊕ gαμδβρ

)
(58)

where ⊕ implies + or − depending on whether symmetric or antisymmetric combi-
nations of the indices are involved. Clearly, ⊕ also contains the appropriate symmetry
factors.

As an example, let us take B
ρ
μν = S

ρ
μν which is antisymmetric in (μ, ν). In this case,

when contracting S
ρ
μν with �αβμνλρ only the anti symmetric part of �αβμνλρ in (μ, ν)

matters. In other words, when B
ρ
μν = S

ρ
μν we consider only

�
αβ[μν]
λρ = 1

2

[
gλρ

(
gαμgβν − gανgβμ

)

⊕ δαλ
(
gβνδμρ − gβμδνρ

)

⊕ δ
β
λ

(
gανδμρ − gαμδνρ

)

⊕
[
δ
μ
λ

(
gβνδαρ ⊕ gαβδνρ ⊕ gανδβρ

)

−δνλ
(
gβμδαρ ⊕ gαβδμρ ⊕ gαμδβρ

) ]]
(59)

which is anti-symmetric in (μ, ν).
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If A
λ
αβ in (57) is antisymmetric in (α, β) then we consider antisymmetric part of

(59).

�
[αβ][μν]
λρ = 1

4

[
δαλ

(
gβνδμρ − gβμδνρ

) − δ
β
λ

(
gανδμρ − gαμδνρ

) ]

+1

4

[
δ
μ
λ

(
gβνδαρ − gανδβρ

) − δνλ
(
gβμδαρ − gαμδβρ

) ]

+1

2
gλρ

(
gαμgβν − gανgβμ

)
(60)

For instance, S • S will be computed by using this contraction tensor.
However, if A

λ
αβ in (57) is symmetric in (α, β) then we have to consider symmetric

part of (59).

�
(αβ)[μν]
λρ = 1

4

[
δαλ

(
gβνδμρ − gβμδνρ

) + δ
β
λ

(
gανδμρ − gαμδνρ

) ]

+1

4

[
δ
μ
λ

(
gβνδαρ + gανδβρ

) − δνλ
(
gβμδαρ + gαμδβρ

) ]

+1

2
gαβ

(
δ
μ
λ δ

ν
ρ − δνλδ

μ
ρ

)
(61)

For instance, Q•S should be computed by using this contraction tensor. In computing
Q • Q we should symmetrize in both (μ, ν) and (α, β). Then contraction tensor of

Q • Q is given

�
(αβ)(μν)
λρ = gαβgμνgλρ + 1

2

[
gλρ

(
gαμgβν + gανgβμ

)

+gμν
(
δαλ δ

β
ρ + δ

β
λ δ
α
ρ

)
+ gαβ

(
δ
μ
λ δ

ν
ρ + δνλδ

μ
ρ

) ]

+1

4

[
δαλ

(
gβνδμρ + gβμδνρ

) + δ
β
λ

(
gανδμρ + gαμδνρ

) ]

+1

4

[
δ
μ
λ

(
gβνδαρ + gανδβρ

) + δνλ
(
gβμδαρ + gαμδβρ

) ]
(62)

In addition to these, one can compute contraction of divergence of tensors as

∇()A • ∇()B = ∇()
λAλαβ�

αβμν∇()
ρBρμν (63)

�αβμν is contraction tensor and defined in general form as

�αβμν = gαβgμν ⊕ gαμgβν ⊕ gανgβμ (64)

If A is symmetric in (α, β) and B is symmetric in (μ, ν) contraction tensor takes the
form

�(αβ)(μν) = gαβgμν + 1

2

(
gαμgβν + gανgβμ

)
(65)
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this contraction tensor can be used to compute ∇Q • ∇Q because Q is symmetric in
(αβ). To compute ∇S•∇S, one needs contraction tensor which is antisymmetric both
couple of indices.So,

�[αβ][μν] = 1

2

(
gαμgβν − gανgβμ

)
(66)

If one writes contraction tensor of ∇Q • ∇S, finds it as

�(αβ)[μν] = 0 (67)

Appendix B: Positive-definite mass matrix

In the text, we mentioned that for a stable theory, each of the three eigenvalues must
individually be positive. This leads to non-trivial constraints on the coefficients in
(42). In this appendix we shall discuss certain related details. The eigenvalues of (41)
follow from the cubic algebraic equation

−λ3 + bλ2 + cλ+ d = 0 (68)

where

b = aV V + aUU + aW W

c = −aV V aUU − aV V aW W − aUU aW W + a2
U W + a2

V U + a2
V W

d = aV V aUU aW W + 2aV U aU W aV W − a2
U W aV V − a2

V W aUU − a2
V U aW W . (69)

The roots of (68) must each be non-negative for guaranteeing absence of instabilities.
The analytic expressions for roots are well-known. However, the constraint equations
they lead to are too complicated to achieve specific statements about the elements of
the mass matrix (41). Nevertheless, in a given specific problem, one can determine the
allowed ranges for aV V , . . . , aU W at least numerically,

As an algebraically simpler case to exemplify, one can focus on the special case of
vanishing discriminant, that is, one considers


 = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2 (70)

so that only two independent eigenvalues are left. Indeed, one has

λ1 = − b

3a
− 2

3a
3

√
1

2
[2b3 − 9abc + 27a2d] (71)

and

λ2 = − b

3a
+ 1

3a
3

√
1

2
[2b3 − 9abc + 27a2d] . (72)
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For positive-definite mass matrix, λ1 and λ2 must each be positive:

λ1 > 0 ⇒ −b

2
<

3

√
1

2
[2b3 − 9abc + 27a2d] (73)

and

λ2 > 0 ⇒ b > 3

√
1

2
[2b3 − 9abc + 27a2d] . (74)

These two constraints lead one at once to the bound

− b

2
<

3

√
1

2
[2b3 − 9abc + 27a2d] < b. (75)

Similar bounds can be derived for general as well as special cases [8]. In general, con-
straints on various coefficients become more suggestive in some physically relevant
special cases. We here thus exemplify two such cases: symmetric and antisymmetric
connections.

1. Symmetric Connection : ()λαβ = ()λβα
As we have mentioned in the text, in this case, torsion tensor identically vanishes
(Sλαβ = 0), and consequently Vα = Uα . The theory then reduces to a two-vector
theory of V and W. From Eq. (40) the mass-squared matrix of vectors is found to
be

1

2
M2

Pl

(
a′

V V + a′
UU + 2a′

V U a′
V W + a′

U W
a′

V W + a′
U W a′

W W

)
(76)

where various coefficients are given by

a′
V V = 1

18
+ 44

9
cQ,

a′
UU = aW W ,

a′
W W = 1

18
+ 14

9
cQ,

a′
V U = −1

9
+ 20

9
cQ,

a′
V W = −1

9
+ 20

9
cQ,

a′
U W = 7

18
+ 14

9
cQ . (77)

which follow from (40) for vanishing torsion. Clearly, cQ is the only variable. The
eigenvalues of (76) follow from the quadratic algebraic equation;

λ2 + b′λ+ c′ = 0 (78)
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where

b′ = −a′
V V − a′

UU − 2a′
UU − a′

W W

c′ = (a′
V V + a′

UU + 2a′
UU )a

′
W W − (a′

V W + a′
U W )

2 . (79)

From the Eq. (78), one directly determines the discriminant


 = 11680

81
c2

Q + 872

162
cQ + 109

324
(80)

and eigenvalues

λ1,2 = a′
V V + a′

UU + 2a′
UU + a′

W W ± √



2
= − 1

18 + 112
9 cQ ± √




2
(81)

For a physically sensible theory, the eigenvalues must all be positive. By consid-
ering the constraint of positive discriminant and roots, one finds two appropriate
intervals

cQ < −0.046 cQ > 0.68. (82)

This shows that except for the small interval containing origin, all values of cQ

lead to a stable massive two-vector theory.

2. Anti-symmetric tensorial connection: Vα = −Uα and Wα = 0

In this case we end up with a single-vector theory with mass-squared 1
2 M2

Pl āV V

where āV V = 1/3 + 8cS + 2cQ + 8cQS . This coefficient must be positive and
hence

4cS + cQ + 4cQS > −1

6
(83)

A much more special arises when non-metricity vanishes. In this special case, the
coefficients cQ and cQS both vanish, an one finds

cS > − 1

24
(84)

as a bound on cS .
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