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Abstract14

We present high resolution S-wave teleseismic tomography images of the western segment15

of the North Anatolian Fault (NAFZ) in Turkey using teleseismic data recorded during the16

deployment period of the DANA array. The array comprised 66 stations with a nominal17

station spacing of 7 km, thus permitting a horizontal and vertical resolution of approxi-18

mately 15 km. We use the current S-wave results with previously published P-wave tele-19

seismic tomography to produce maps of relative VP/VS anomalies, which we use to high-20

light the difference in overall composition of the three terranes separated by the northern21

(NNAF) and southern (SNAF) branches of the NAFZ. Our results show a narrow S-wave22

low velocity anomaly beneath the northern branch of the NAFZ extending from the up-23

per crust, where it has a width of ∼10 km, to the lower crust, where it widens to ∼30 km.24

This low velocity zone most likely extends into the upper mantle, where we constrain its25

width to be ≤50 km and interpret it as indicative of localised shear beneath the NNAF;26

this structure is similar to what has been observed for the NAFZ west of 32° and there-27

fore we propose that the structure of the NNAF is similar to that of the NAFZ in the east.28

The SNAF does not show a very strong signature in our images and we conclude that it is29

most likely rooted in the crust, possibly accommodating deformation related to rotation of30

the Armutlu/Almacik Blocks situated between the two NAFZ branches.31

1 Introduction32

Continental strike-slip faults, such as the North Anatolian, San Andreas, Altyn Tagh33

and Alpine faults, are major structures accommodating the relative movement between tec-34

tonic plates. Whether or not intracontinental strike-slip faults are rooted in the middle to35

lower crust or penetrate the upper mantle, however, is still a subject of debate (e.g. Sibson36

[1983]; Vauchez and Tommasi [2003]; Wilson et al. [2004]). In this study we exploit pas-37

sive seismic data to image the western section of the North Anatolian Fault Zone (NAFZ)38

in Turkey, a dextral continental strike-slip fault which extends for approximately 1200 km39

across the north of the Anatolian peninsula (Fig. 1). Our aim is to understand its structure40

in the mid-lower crust and examine the extent to which it penetrates into the upper mantle.41

The inception of the North Anatolian Fault occurred between 13 and 11 Ma (Şengör42

et al. [2005]), and came about due to the confluence of two factors: the push of the Ara-43

bian plate towards the Eurasian plate in the southeast and subduction along the Aegean44

arc in the west. However, the importance of these two tectonic events and the mecha-45
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nisms that drive them in present day motion of the Anatolian peninsula are debated (e.g.46

Reilinger et al. [2006]; Özeren and Holt [2010]; England et al. [2016]). Geological evi-47

dence (Şengör et al. [2005]) supports the notion that the NAFZ, after inception in eastern48

Turkey, progressed westward and only reached the Marmara Sea approximately 4 Ma ago49

(Le Pichon et al. [2016]). The NAFZ is seismically active and has experienced a series of50

migrating earthquakes in the last century (Stein et al. [1997]), the most recent of which51

were the M>7 Izmit and Düzce events in northern Anatolia in 1999 (Fig. 1).52

Geophysical signatures of the NAFZ to the east of our study area (Fig. 1), before it58

splays into northern and southern branches, can be found in several studies; Biryol et al.59

[2011] found that the NAFZ forms a rather sharp, lithospheric scale structural boundary,60

separating older lithosphere of the north Anatolian province and the younger central Ana-61

tolian province. A substantial north-south increase in Bouguer anomaly across the NAFZ62

also supports these findings and may indicate an increase in crustal density to the north63

(Ates et al. [1999]). Results from full waveform inversion (Fichtner et al. [2013]) image,64

along strike, low S-wave velocities linking the crustal expression of the NAFZ to a broad65

(i.e. 50-100 km wide at 60 km depth) region of low velocity in the mantle, however, the66

authors note that no clear signature of the NAFZ can be seen west of 32°, where our cur-67

rent study is located. In addition, low upper-crustal velocities (VP ≤6 km/s at depths of68

5-15 km) along the NAFZ in central Anatolia were also reported by a local earthquake69

tomography study (Yolsal-Çevikbilen et al. [2012]).70

Recent studies on the western portion of the NAFZ (Fig. 1) revealed additional in-71

formation on the structure of its two strands. The presence of different lithologies bound-72

ing the northern branch of the NAFZ has been inferred by Bulut et al. [2012] and Najdah-73

madi et al. [2016] by tracking fault head waves caused by the presence of a bimaterial in-74

terface. This is also consistent with a change in Moho signature and depth observed in the75

Istanbul Zone and has been attributed to either the presence of a thicker crust (Frederik-76

sen et al. [2015]) or a weak Moho underlain by a highly anisotropic layer (Kahraman et77

al. [2015]). These observations support the idea that a clear separation between the north78

Anatolian province and the central Anatolian province exists across the northern NAFZ.79

Receiver function and autocorrelation studies (Kahraman et al. [2015]; Taylor et al. [2016])80

reported truncation of several sub-horizontal structures throughout the crust beneath both81

NAFZ strands. Furthermore, an absence of Moho signature beneath the northern NAFZ82

may indicate a fault zone rooted in the upper mantle (Kahraman et al. [2015]). Results83
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from P wave teleseismic tomography in the same area (Papaleo et al. [2017]) provided the84

first direct evidence for a narrow (<50 km) fault zone that extends into the upper mantle85

to a depth of at least 80 km beneath the northern branch of the NAFZ.86

The S wave teleseismic tomography presented in this study, together with a δ(VP/VS)87

model obtained by combining our S and P wave results (Papaleo et al. [2017]), comple-88

ments the P wave study and effectively outlines different characteristics of the two fault89

strands. We are able to map the northern branch of the NAFZ (NNAF) as a low velocity90

anomaly from crust to upper mantle using our new S-wave velocity model, while high-91

lighting major differences in crustal geology with the δ(VP/VS) model. We discuss our92

findings in terms of fault structure and the evolution of fault width with depth.93

2 Data and methods94

In this study we use teleseismic data collected during the operational period of the95

DANA (Dense Array for Northern Anatolia, 2012) array (Brisbourne [2012]), composed96

of 73 broadband stations deployed between May 2012 and October 2013. The main array97

comprises 66 stations covering an area of approximately 70 x 35 km with a 7 km nomi-98

nal station spacing; the remaining stations were deployed in a semicircle around the main99

array to the east (Fig. 1). A total of 10,650 arrival time residuals from 198 events have100

been used to perform the S wave teleseismic tomography; of these events, 98 are direct S101

wave arrivals, 55 are SKS arrivals, 25 are SKKS arrivals and 20 are SS arrivals (Fig. 2).102

The north-south and east-west components recorded by the instruments were rotated108

into transverse and radial components and filtered between 0.04 and 0.5 Hz with a But-109

terworth bandpass filter. To check the dependence of the results on the use of a particular110

component, we carried out two separate inversions using recordings from solely radial and111

solely transverse components. We found that the final results do not differ significantly,112

therefore, we selected the component with the highest signal to noise ratio for each event113

in the final inversion.114

Relative arrival time residuals were obtained using an adaptive stacking technique115

(Rawlinson and Kennett [2004]), which is particularly effective in this setting because tele-116

seismic waveforms are coherent across the array. This method works by initially aligning117

phases from a single event using move-out correction based on ak135 global reference118

model. The remaining time shifts required to perfectly align the phases correspond to119
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the arrival time residuals which can be attributed to lateral variations in wavespeed be-120

neath the array. Since there is no absolute reference frame for the alignment, the arrival121

time residuals are meaningful in a relative rather than absolute sense. The results of the122

stacking procedure were manually checked to eliminate all traces with poor signal to noise123

ratio. In addition, all residuals with a discrepancy between observed and predicted val-124

ues greater than 0.5 s after an initial inversion, were removed to improve the final model.125

To perform the tomography, we use the Fast Marching Teleseismic Tomography code126

(Rawlinson et al. [2006]), an iterative method based on subspace inversion (Kennett et al.127

[1988]) and the Fast Marching Method (Sethian [1999]) to compute arrival times through128

the laterally heterogeneous model volume. Traveltimes from the source to the boundary of129

the local model volume are based on ak135 predictions. The final velocity model is com-130

puted by minimising the function131

F(m) = 1
2
[Φ(m) + ϵΨ(m) + ηΩ(m)], (1)

where m is the vector of model parameters, Φ(m) is the data misfit function, Ψ(m) the132

model misfit function (i.e. misfit of the current model with respect to the starting model)133

and Ω(m) constrains the model roughness; ϵ and η are the damping and smoothing param-134

eters which control the overall trade-off between how well the model m fits the data, how135

close it is to the starting model and how smooth it is.136

The local 3D volume used in this inversion, extending to a depth of 100 km, is de-137

fined by a grid with a 5 km node spacing in all directions. Reference 1D velocities within138

the volume (Table 1) are modified from the general ak135 velocity model, taking into con-139

sideration seismic refraction and receiver function derived velocity models from previous140

studies in the same area (Karahan et al. [2001]; Kahraman et al. [2015]). We also set our141

Moho depth at 37 km in accordance with previous receiver function studies (Vanacore142

[2013]; Kahraman et al. [2015]) and to be consistent with our previous P wave teleseis-143

mic tomography study in the same area (Papaleo et al. [2017]). However, we note that the144

Moho in the inversion is not explicitly expressed as an additional interface in the model;145

instead it is represented by a sharp velocity gradient. Station terms are inverted for and,146

prior to the final inversion, damping and smoothing parameters were calibrated to obtain147

a good trade-off between data fit, model perturbation and roughness (see Supplementary148

Figures S3, S4, S5 and S6 for further details).149
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Table 1. Background velocity model used for the inversion (velocity model taken from Kahraman et al.

[2015]).

164

165

Depth(km) Vp(km/s) Vs(km/s) VP/VS

0 3.776 2.128 1.774

2 3.776 2.128 1.774

2 5.194 2.928 1.774

13 5.194 2.928 1.774

13 6.286 3.540 1.776

24 6.484 3.717 1.744

37 6.484 3.717 1.744

37 7.539 4.367 1.726

77 8.045 4.490 1.792

A number of synthetic tests have been carried out on the data to assess the resolu-152

tion of our tomographic model. Checkerboard test results (Fig. 3) indicate that there is153

good recovery of the original velocity anomaly pattern to 80 km depth (the maximum in-154

put velocity perturbation being 0.35 km/s), with a more pronounced (up to 50%) loss in155

amplitude below 50 km depth. The original pattern of anomalies is especially well re-156

solved in the area beneath the stations, where we observe a very good recovery of 15 km157

size anomalies both horizontally and vertically. Spike test results (see Supplementary Fig-158

ures S7 and S8) show that horizontal smearing (relative to our choice of input anomaly) is159

modest in the upper mantle (±2 km) and largely absent at crustal and Moho depth, while160

vertical smearing is more pronounced and generally within ±8 km. We quantify amplitude161

loss to be less than 30% in the crust but more significant in the upper mantle, where we162

observe an approximately 50% reduction in amplitude at 70 km depth.163

2.1 δ(VP/VS) estimate166

To obtain additional information on the seismic properties of our study area, we pro-167

duced δ(VP/VS) estimates using the results obtained from P and S wave tomography. Ta-168

ble 1 provides the initial VP/VS values, which are, on average, similar to results from local169

earthquake tomography studies (Koulakov et al. [2010]; Yolsal-Çevikbilen et al. [2012]).170
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Although there are teleseismic studies that constrain variations in VP/VS by jointly in-171

verting P and S datasets (e.g. Hammond and Toomey [2003], Schmandt and Humphreys172

[2010]), we note that VP/VS estimates are not usually obtained from teleseismic data,173

which constrain relative rather than absolute velocities. In particular in this study, rather174

than the absolute VP/VS ratio, we are looking for perturbation in the VP/VS ratio (see175

Supplemetary Text S1 for a full derivation):176

δ

(
VP

VS

)
=
δVP − CδVS

V0
S
+ δVS

, (2)

where C = V0
P/V0

S
, V0

P and V0
S

are reference model velocities and δVP and δVS their re-177

spective perturbations. In this case the sign of the perturbation depends the sign of the178

numerator (δVP − CδVS); therefore, if the model VP/VS ratio is too high, it will result in179

overly negative perturbations and if it is too low in overly positive perturbations; however,180

the relative perturbations are likely robust. Nevertheless, different initial values of VP/VS181

ratio were tested to ensure that the changes do not affect our results significantly (see Sup-182

plementary Figures S11 and S12). In addition to ensure that the δ(VP/VS) anomalies that183

we obtain are robust, we performed several tests to ensure that the recovered anomalies184

are not the result of arbitrary initial parameter choices, variable data coverage or solution185

non-uniqueness (see Supplementary Figures S9 and S10). As an additional measure, we186

only interpret the final results in terms of broad changes in δ(VP/VS) pattern rather than187

absolute perturbations.188

First, δ(VP/VS) plots were obtained only using direct P and S arrivals and, to ensure189

an even coverage, we only used traces for which both P and S recordings were available.190

The initial results were tested by varying the damping and smoothing parameters in eq. 1191

for P and S inversions independently, using values of 1, 2, 5 and 10. After checking that192

the results obtained by using all these different combinations of values were broadly con-193

sistent with each other, we chose final damping and smoothing values of 10 and 5 for P194

and 5 and 2 for S respectively. The final parameters were found to yield good results both195

in the independent inversion of P and S waves and the final δ(VP/VS) results. In addition,196

we also checked our results by fixing the damping and smoothing parameters and varying197

the initial velocity model. Checkerboard tests for VP, VS and δ(VP/VS) using the afore-198

mentioned subset of data demonstrate that data recovery is most robust in the uppermost199

40 km; therefore we limit our interpretation to crustal features (see Supplementary Figures200

S14 and S15).201
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3 Results202

3.1 Relative S wave model203

We present our results in Figures 4 and 5; all velocities are expressed in percentage204

variation with respect to the starting model in Table 1. Overall, relatively low velocities205

(−2 to − 3%) are constrained in the Sakarya Zone to Moho depths and a relatively high206

velocity anomaly (+1%) is imaged between the two branches of the NAFZ in the Armutlu207

Block. The Istanbul Zone, in the north of our study area, predominantly exhibits relatively208

high velocities (+1 to + 2%), with the exception of a ∼20 km band of relatively low ve-209

locities (−1%) oriented broadly east-west. Depth slices shown in Figure 4 demonstrate210

that the velocity patterns are generally consistent between the upper and lower crust. How-211

ever, below the Moho, we observe a change in the pattern of velocity anomalies from an212

east-west alignment that is consistent with first order changes in the surface geology at the213

major NAFZ branches and the highest density of seismicity, to a north-south to northeast-214

southwest alignment of velocity anomalies in the upper mantle (Fig. 4)215

Our north-south profiles (Fig. 5) span an area between 30.1 and 30.5° E, where we222

have the best resolution in our model. We consistently observe relatively high velocities223

(up to 2%) in the crust north of the northern branch of the NAFZ (NNAF), while in close224

proximity to the surface trace of the NAFZ velocities are relatively low (approximately225

−1%). In all our vertical profiles, the low velocity anomaly beneath the NNAF extends226

from the upper crust, where its width is constrained to be ∼10 km, to the lower crust,227

where it widens to ∼30 km, and penetrates into the upper mantle. In the western pro-228

files (Fig. 5b), this low velocity anomaly merges with a broader upper mantle low velocity229

anomaly extending for approximately 80 km in a north-south direction.230

A relatively high velocity anomaly (up to 2%) is situated in the Armutlu Block be-231

tween the two branches of the NAFZ and is visible in all profiles; this anomaly is nar-232

rower (∼10 km) and confined to the crust in the west, while it increases in volume east-233

ward where, approximately at Moho depths, it widens (up to 30 km) towards the Sakarya234

Zone and extends into the upper mantle.235

The southern branch of the NAFZ (SNAF) and the area to its south exhibit the low-236

est velocity anomaly imaged in our model (peak perturbation of -3%). The low velocity237

anomaly beneath the SNAF extends perpendicular to the NAFZ for approximately 40 km238
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in the crust and, with the exception of the profile at 30.1° E, only extends into the upper239

mantle south of 40.3 ° N. It is cut for most of its horizontal length by the relatively high240

(+1 to + 2%) velocity body between the two strands of the NAFZ.241

3.2 δ(VP/VS) model242

As described in Section 2.1, the δ(VP/VS) model adds an interpretative tool which243

complements the S wave tomography model presented in this study and the P wave to-244

mography model presented in Papaleo et al. [2017]. Figure 6c shows δ(VP/VS) results245

in two vertical profiles, together with the respective P and S wave velocity profiles. Re-246

sults are also, in this case, shown as a percentage variation with respect to an initial ve-247

locity model (Table 1). Overall, we observe lower δ(VP/VS) anomalies in the Istanbul248

Zone and generally higher (up to 3%) δ(VP/VS) values in both the Sakarya Zone and Ar-249

mutlu Block; the highest values are observed south of the SNAF in the upper crust of the250

Sakarya Zone. We also note that the overall pattern of δ(VP/VS) anomalies changes be-251

tween upper and lower crust, particularly beneath the SNAF, NNAF and Istanbul Zone,252

where there is a polarity reversal in δ(VP/VS) anomaly.253

We now examine the characteristics of our δ(VP/VS) model where prominent anoma-260

lies are identified in the VS tomography model (i.e. beneath the surface location of the261

NNAF and first order variations between the Istanbul Zone, Armutlu Block and Sakarya262

Zone) using the two best resolved north-south profiles (Fig. 6e, f).263

The NNAF is clearly situated at an abrupt lateral variation between δ(VP/VS) values264

of -2% to the north and +2% to the south (Fig.6e, f). This characteristic of the δ(VP/VS)265

model extends west-east over 60 km and correlates closely with the surface trace of the266

NNAF and elevated rates of seismicity (Altuncu-Poyraz et al. [2015]). This sharp lateral267

change in δ(VP/VS) appears as a sub-vertical pronounced velocity gradient to depths of268

15-20 km in our model (corresponding to the seismogenic depth), but either does not ex-269

tend deeper or is offset northwards by ∼10 km in the lower crust. δ(VP/VS) values north270

of the NNAF, in the Istanbul Zone, are characteristically the lowest observed in our model271

(−2 to − 3%) but may increase northwards.272

In general, Armutlu Block crust is characterised by medium to high δ(VP/VS) values273

between 0.5-2.5%, whereas Sakarya Zone crust displays the highest δ(VP/VS) values in274

our model (> 2.5%). This first-order change occurs at the surface location of the SNAF,275
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which is marked by a slight reduction in δ(VP/VS) within a <10 km wide zone (noting276

that we can recover anomalies ∼7 in size in the upper region of our model - see Supple-277

mentary Figure 5) that may extend from the surface into the mid-lower crust. This fea-278

ture, although not prominent in all of our profiles, is the first indication from any velocity279

model of the presence and structure of the SNAF within the crust and correlates well with280

SNAF-related seismicity (Altuncu-Poyraz et al. [2015], Fig. 6f).281

4 Interpretation282

4.1 NNAF283

Our S wave velocity model constrains a ∼15 km wide low velocity zone (−1 to −284

2%) in the upper crust directly beneath the surface trace of the NNAF; low velocities are285

often associated with fault zones (e.g. Smith et al. [1995]; Wittlinger et al. [1998]; Ficht-286

ner et al. [2013]) and are thought to occur due to fracturing and the presence of fluids287

(e.g. Koulakov et al. [2010]) or the presence of a fault damage zone (e.g. Hong and Menke288

[2006]; Allam and Ben-Zion [2012]). Through plotting the seismicity that occurred dur-289

ing the DANA deployment period (Altuncu-Poyraz et al. [2015]) onto our velocity images290

(Figs. 4, 5, 6), it is clear that the currently most actively deforming parts of the upper291

crust coincide with our major low velocity zone and strongest δ(VP/VS) lateral change292

beneath the NNAF (Figs. 5b, 6c and 6e), therefore we interpret our results to be consis-293

tent with the presence of a localised damage zone in the upper crust beneath the NNAF at294

a major geological interface. We note, however, that not all seismicity coincides with our295

anomalies and we observe that clusters of off-fault events occur in the high velocity region296

north of the NNAF (Fig. 5d).297

A similar VP/VS pattern to that observed beneath the NNAF (relatively higher δ(VP/VS)298

south of the fault and relatively lower δ(VP/VS) to the north) has also been imaged at299

other major fault zones (e.g. Lin and Thurber [2012]; Eberart-Philips et al. [2005]) and we300

interpret it to result from lithological differences between the older Istanbul Zone and the301

younger Armutlu Peninsula terranes, also observed by previous teleseismic studies (Biryol302

et al. [2011]). Clear signatures of the presence of the NNAF in the upper crust in this re-303

gion can also be found in other studies, for example, Bulut et al. [2012] find a 6 % change304

in the velocity of fault head waves across the northern branch of the fault, which is similar305

to the 3-4 % change in velocity according to our P and S wave velocity models (particu-306
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larly bearing in mind that the magnitude of the perturbations might be underestimated in307

the tomography) and a reduction (of 0.2 to 0.6 km/s) in absolute P wave velocity beneath308

the fault (Behyan and Alkan [2015]).309

Discontinuities throughout the crust mapped by a previous receiver function study310

(Kahraman et al. [2015]) are plotted in Figs. 6c and 6d and their truncation occurs where311

we constrain lateral changes in crustal velocity structure and where either Moho discon-312

tinuity amplitude is reduced (Kahraman et al. [2015]) or there is a step in Moho depth313

(Frederiksen et al. [2015]). In a similar location beneath the NNAF, magnetotelluric stud-314

ies (e.g. Tank et al. [2005]) show a boundary in the mid to lower crust between a resis-315

tive body to the north and a conductive body to the south. We expect that below seismo-316

genic depths (15-20 km in our study area) fault deformation is likely going to be localised317

within mylonite belts (e.g. Sibson [1983]; Norris and Toy [2014]), the extent of which,318

from a combination of results from this and the aforementioned studies, is likely to be319

∼10 km in the upper crust, widening to ∼30 km in the lower crust.320

The relatively low velocity zone that we observe beneath the NNAF most likely ex-321

tends into the upper mantle (Figs. 4 and 5), where it widens to ≤50 km. We note that322

while our synthetic resolution tests indicate that the resolution decreases below ∼40 km323

depth (see Fig. 3), it is still sufficient to support the increase in width of the low velocity324

zone with depth. Therefore, following interpretation of low upper mantle velocity anoma-325

lies in previous studies using similar techniques (e.g. Wittlinger et al. [1998]; Vauchez and326

Tommasi [2003]), we interpret this anomaly as localised shear beneath the NNAF.327

4.2 SNAF336

We note that our δ(VP/VS) maps (Fig. 6c) show up to a 2% lateral change in the337

vicinity of the surface trace of the SNAF, which is the most prominent expression of the338

southern branch of the NAFZ in our model. Frederiksen et al. [2015] also observe a change339

in P-S velocity ratio across the southern NAFZ and attribute it to differences in crustal340

composition between the Sakarya Zone and the Armutlu Block. Our S wave velocity pro-341

files (Fig. 5) show diffuse relatively low velocities beneath the SNAF clearly terminating342

at or above Moho depth; coupled with findings from autocorrelation and receiver function343

studies (Kahraman et al. [2015] and Taylor et al. [2016]), which do not image any trun-344
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cation in the Moho signal beneath this branch of the fault, and therefore together these345

results support the hypothesis that the SNAF is rooted in the crust.346

Local seismicity recorded in the region (Altuncu-Poyraz et al. [2015]) occurs within347

the relatively low velocity area imaged beneath the SNAF and often within zones of lower348

δ(VP/VS) (Fig. 6). Historical records (Ambraseys [2002]) show that the SNAF has been349

the source of fewer large (MS ≥6.8) earthquakes compared to the NNAF, the latest of350

which dates back to the XV century. Moreover, GPS measurements (Meade et al. [2002])351

report a lower slip rate (5-10 mm/yr) on the SNAF as compared to the NNAF (∼25 mm/yr).352

We therefore interpret our observations, in conjunction with the findings of previous stud-353

ies, to indicate that the SNAF represents a weak zone within the Sakarya crust that most354

likely localises deformation caused by local rotation of the Armutlu and/or Almacik Blocks355

as central Anatolia extrudes (e.g. England et al. [2016]).356

4.3 Juxtaposed terrains357

Our new S wave velocity and derivative δ(VP/VS) models show clear first-order dif-358

ferences in lithosphere velocity characteristics between the Istanbul Zone, Armutlu Block359

and Sakarya Zone. We show that the Sakarya Zone typically exhibits relatively low ve-360

locities and relatively high δ(VP/VS), in contrast to the Istanbul Zone, which is typically361

characterised by relatively high velocities and low δ(VP/VS). Between them, the Armutlu362

Block appears more complex, with both fast and slow velocities and varying δ(VP/VS).363

We estimate likely VP/VS ranges (at 400 MPa) of the terranes separated by the NNAF364

to be 1.76-1.82 (south) and 1.71-1.73 (north) using values published by Christensen [1996]365

and hence find that a 4-5 % range in δ(VP/VS) would be reasonable to expect. We there-366

fore conclude that the sharp δ(VP/VS) contrast (and, to a lesser extent, velocity contrast)367

observed in connection with the NNAF can be explained by the juxtaposition of two dis-368

tinct terrains: a Triassic-Cretaceous tectonic assemblage in the Armutlu Peninsula (Yılmaz369

et al. [1997]) and sedimentary sequences of Ordovician to Carboniferous age overlaying a370

Proterozoic granitic and metamorphic basement in the Istanbul Zone (Görür et al. [1997];371

Chen et al. [2002]). We interpret the higher velocity region in the Armutlu block (Fig.372

5) to represent the steeply dipping thrusts of mafic and ultramafic rocks, interpreted as373

the detached basement of the Sakarya Zone upthrusted during the late stages of the Pale-374

otethys closure by Bozkurt et al. (2012). This is consistent with the fact that mafic and ul-375
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tramafic rocks typically exhibit fast S wave velocities (>3.7 km/s) within the crust (Chris-376

tensen [1996]).377

The Istanbul Zone shows relatively high velocities throughout the crust and upper378

mantle in our P and S velocity models (Fig. 6a-d). A relatively low δ(VP/VS) ratio is also379

consistent with local earthquake tomography results (Koulakov et al. [2010]). Furthermore380

magnetotelluric observations (Tank et al. [2005]) constrain a strong resistor 10 km beneath381

the Istanbul Zone and gravity studies indicate that the Istanbul Zone is anomalously dense382

(Ates et al. [1999]). We use these results together to interpret that the Istanbul Zone repre-383

sents an ancient and strong (e.g. Tesauro et al. [2007]) terrain with a possibly limited fluid384

content.385

Geological evidence shows that the Sakarya terrain to the south is comprised of a386

lower Jurassic-Eocene sequence overlying a series of subduction-accretionary units (Okay387

and Tüysüz [1999]; Şengör and Yilmaz [1981]) and a high grade metamorphic crystalline388

basement (Okay et al. [2006]). While our δ(VP/VS) values are consistent with estimates389

for high grade metamorphic facies from Christensen [1996], our S and P wave velocity390

model (Figs. 6a-c) show diffuse low velocities in the Sakarya Zone, which would be com-391

patible with the presence of serpentinite. However, the presence of some ophiolites in the392

area does not entirely justify these results, suggesting that the composition of the Sakarya393

Zone may be more complex.394

5 Discussion395

We discuss the results of the present study, combined with previous P wave teleseis-396

mic tomography results (Papaleo et al. [2017]) and results from several other studies in the397

area, in terms of overall fault properties and structure from crust to upper mantle.398

5.1 North Anatolian Fault399

A number of geophysical studies have been conducted on the North Anatolian fault400

in an attempt to better characterise its properties and structure, largely motivated by its401

seismic activity in the past 80 years (Stein et al. [1997]). Receiver function studies of the402

Anatolian peninsula are in agreement on a thinning of the crust from east to west (from403

∼45 km to ∼30 km), compatible with the extensional regime predominant in western Ana-404
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tolia (Vanacore [2013]; Kind et al. [2015]); any signature of the NAFZ at Moho depth is,405

however, not detected in these regional studies.406

Low velocities associated with the NAFZ in the crust are found both to the west and407

east of our study area (Yolsal-Çevikbilen et al. [2012]; Karabulut et al. [2003]), as well as408

beneath the NNAF (Koulakov et al. [2010]). VP/VS results from Koulakov et al. [2010],409

show higher VP/VS values of 1.78-1.80 in the vicinity of the NNAF, while to the east the410

NAFZ seems to be associated with either high or low VP/VS values (Yolsal-Çevikbilen411

et al. [2012]), which the authors interpret as a result of variable presence of fluids along412

the fault zone. Through our δ(VP/VS) results on the other hand, rather than higher or413

lower δ(VP/VS) beneath the fault, we image the NNAF as a boundary between relatively414

high δ(VP/VS) to the south and relatively low δ(VP/VS) to the north; while this is com-415

patible with the observed surface geology, we note that our δ(VP/VS) resolution is not as416

high as the aforementioned studies and therefore might not be able to resolve smaller scale417

changes beneath the NAFZ.418

Pn tomography studies show a change in Pn velocities across the NAFZ (Mutlu419

and Karabulut [2011]; Gans et al. [2009]), which correlates well with the P-wave veloc-420

ity model of Biryol et al. [2011] and highlights a difference in velocity north and south of421

NAFZ. This velocity pattern is also observed in recent P-wave tomography (Papaleo et al.422

[2017]) and the current S-wave tomography study, and most likely reflects the presence of423

markedly different terrains (i.e. the Istanbul Zone and Sakarya Zone) north and south of424

the NAFZ.425

A key feature in our model is the relatively low velocity anomaly beneath the NNAF,426

which extends from the crust to the upper mantle. Results showing linked low velocity427

anomalies in the crust and upper mantle east of 32° longitude (i.e. east of our study area),428

have been documented by Fichtner et al. [2013], and interpreted as a pre-existing zone of429

weakness (mostly following the boundary between Pontides and Anatolides) that subse-430

quently facilitated the development of a large continuous fault zone. We suggest that our431

results complement the previous findings and indicate that the NNAF in our study region432

has a similar structure to the NAFZ to the east, while the SNAF is rooted in the crust. In433

western Anatolia the pull exerted by subduction along the Hellenic arc is the predomi-434

nant tectonic force in the region, exerting control over the extrusion velocity of the Ana-435

tolian peninsula (Flerit et al. [2004]) and, as indicated by the GPS vector field (Reilinger436
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et al. [2006]), causing the rotation of the extruding plate. While the NNAF propagates in437

the Sea of Marmara as a single throughgoing dexteral strike-slip fault (Le Pichon et al.438

[2001]), the propagation of the SNAF is less clear, suggesting that this branch of the fault439

might have been formed to accommodate the rotation of the Almacik and Armutlu blocks440

within the Anatolian plate (England et al. [2016]).441

5.2 Comparison with other major fault zones442

Low velocities related to the presence of major strike slip faults have been docu-443

mented, for example, beneath the Alpine Fault (Smith et al. [1995]), San Andreas Fault444

(Thurber et al. [2004]) and Altyn Tagh (Wittlinger et al. [1998]; Zhao et al. [2006]). Geo-445

physical images of the Alpine Fault show that it is likely to be <10 km wide in the crust446

and <30 km wide in the uppermost mantle (almost identical to our observations in this447

study), with a possible crustal decollement (e.g. Stern et al. [2007]), while seismic and448

magnetotelluric data typically shows a steeply dipping <5 km wide fault zone beneath the449

San Andreas fault that extends in the lower crust and may widen to <25 km as it passes450

into the upper mantle (e.g. Fuis and Clowes [1993]; Becken et al. [2008]).451

The possible downward continuation of major strike slip faults in the upper mantle452

has also been debated (e.g. Wittlinger et al. [2004]; Zhao et al. [2006]; Fuis et al. [2007]);453

however, several studies point to the presence of shear zones beneath major faults. Wit-454

tlinger et al. [1998] image a low velocity zone of ∼40 km width in the upper mantle be-455

neath the Altyn Tagh fault that they interpret as a shear zone; this result, also supported456

by a shear wave splitting study by Herquel et al. [2004], is comparable to our observa-457

tion, which hints at the presence of a ∼30 km wide shear zone beneath the NNAF. Esti-458

mates for the San Andreas fault on the other hand range from a ∼50 km shear zone (Ford459

et al. [2014]) to a broader, ∼130 km wide, zone of shear in the upper mantle (Titus et al.460

[2007]), more similar to what has been observed in New Zealand (Audoine et al. [2000];461

Wilson et al. [2004]). Interestingly, as has been observed by Molnar and Dayem [2010],462

all of these faults appear to be bounded by a stronger block to one side and a deforming463

block on the other side, perhaps suggesting that the presence of heterogeneous lithosphere464

may favour the formation of strike slip faults.465
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5.3 Fault zone width throughout the lithosphere466

Field observations of exhumed fault zones report the presence of mylonite belts467

of up to 30 km width in the lower crust, which narrow significantly upward (e.g. Han-468

mer [1988]; Vauchez and Tommasi [2003] and references therein), and suggesting that469

shear zone width narrows with decreasing temperature and depth (Burgmann and Dresen470

[2008]). This is broadly consistent with the results of our study, where we find that the471

relatively low velocity anomalies associated with the NNAF tend to widen with depth.472

However, we note that rather than an approximately smooth width variation with depth473

as predicted by previous models, we observe a step-like change in width at lower crustal474

depth, suggesting that other variables may play an important role in determining the evolu-475

tion of fault zone width with depth.476

Platt and Behr [2011] argue that shear zone width depends on the interplay be-477

tween the effects of deformation mechanisms, temperature increase and stress decrease478

with depth. In particular, they find that upper mantle fault zone width is lowest in strong,479

dry, cratonic crust and that below the seismogenic layer fault zone width could reach up to480

180 km for a San Andreas type fault. According to their model, the width of a shear zone481

is directly proportional to the plate velocity which, in their calculation, they assume to be482

∼50 mm/yr. In the case of the NNAF (assuming similar lithologies for both faults), the483

average velocity is ∼25 mm/yr (Meade et al. [2002]), implying a fault width of up to 90484

km. This estimate is large compared to our results, showing an average shear zone width485

of 30 km in the uppermost mantle. However, this could be explained either by the poten-486

tially invalid assumption of similar lithologies between the two faults or, partly, by taking487

into account the resolution limits in our model.488

Looking at approximately 90 years of fault deformation data, Kenner and Segall489

[2003] showed that the best fitting model for fault zones incorporates a weak vertical shear490

zone in the crust beneath major faults, which is in accordance with results from Yamasaki491

et al. [2014], who find that the NAFZ can be modelled as a vertical weak zone extend-492

ing to mid-crustal depth. In addition, Yamasaki et al. [2014] indicated that the best fitting493

model for the NAFZ is that of a sharp weak zone boundary, implying that the weak zone494

(i.e. the NAFZ) may be bounded by a relatively abrupt change in material properties (e.g.495

lithological contrast, grain size reduction, water content), consistent with the presence of496

different terranes to the north and south of the NAFZ.497
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6 Conclusions498

We have presented results from S wave teleseismic tomography and δ(VP/VS) mod-499

els obtained from the recordings of a dense array of seismic stations in western Anatolia500

and show that SNAF and NNAF exhibit very different characteristics.501

Through our results we are able to constrain the width and extent of the NNAF in502

both crust and upper mantle. In the upper crust the NNAF appears to localise deformation503

in a narrow corridor <10 km wide, which widens -in a sharp rather than smoothly vary-504

ing manner- to ∼30 km in the lower crust; the low velocities continuing from lower crust505

to upper mantle support the idea of a shear zone associated with the northern branch of506

the fault, whose width in the upper mantle we constrain to be ≤50 km. In this context,507

our observations support the hypothesis that the NNAF is a narrow fault zone, separating508

a stronger block (Istanbul Zone) to the north from a deforming block (Armutlu - Sakarya509

Zone) to the south, a feature that has been observed in most major strike-slip faults (Mol-510

nar and Dayem [2010]).In addition, our results suggest that the structure of the northern511

branch of the NAFZ is similar to the structure of the NAFZ east of 32°, as imaged with512

full waveform inversion (Fichtner et al. [2013]).513

The SNAF does not have a very strong signal in our velocity model and δ(VP/VS)514

results, showing a 2% δ(VP/VS) change beneath the surface trace of the southern branch515

of the fault, is the clearest expression of the SNAF. The clear change in the velocity pat-516

tern beneath the fault at Moho depth together with results from other studies, however,517

support the hypothesis that the SNAF is likely rooted in the crust, accommodating the ro-518

tation of the Armutlu and Almacik Blocks.519
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Figure 1. a) Relief map of the study area with station locations (green triangles) and surface fault traces

(red lines). The red square marks the position of Istanbul, while the two blue stars indicate the epicentres of

the 1999 Izmit and Düzce events. b) Map highligting the three main geological units in the area, bounded by

the two strands of the North Anatolian Fault: the Istanbul Zone, the Armutlu and Almacık Blocks and the

Sakarya Zone. The inset shows the location of the study.
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Figure 2. a) Locations of the events used for S wave teleseismic tomography. Yellow dots represent earth-

quakes of mb ≥5.5 from which direct S-arrivals are extracted; orange dots are earthquakes from which

SKS arrivals are extracted; purple dots represent earthquakes from which SS arrivals are extracted and blue

dots represent earthquakes from which SKKS arrivals are extracted. Black concentric circles represent

30° contours in angular distance from the centre of the array. b) Back azimuth distribution of the sources.
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Figure 3. Results of the S-wave checkerboard test for two depth slices at 25 and 65 km depth and two

north-south vertical profiles at 30.2 and 30.45° E; the size of the input anomaly is 15 x 15 x 15 km.
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Figure 4. Depth profiles at 10, 20, 30 and 60 km. The 10 km depth profile (top left) shows the local seis-

micity recorded during the period of deployment of the DANA array (Altuncu-Poyraz et al. [2015]), while the

20 km depth profile (top right) shows the locations of the stations. Surface fault traces are represented by red

lines.
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Figure 5. Vertical profiles through our 3D S-wave velocity model; black dots show the local seismicity

within ±0.05° recorded during the deployment period of the DANA array (Altuncu-Poyraz et al. [2015]).
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Figure 6. a-b) Vertical north-south profiles through the 3D P-wave velocity model; the grid spacing has

been adjusted to match the one used for the S-wave model; black dots show the local earthquakes within

±0.05° , perpendicular to profile, recorded during the deployment period of the DANA array (Altuncu-Poyraz

et al. [2015]); c-d) Vertical north-south profiles through the 3D S-wave velocity model; black dots show the

local earthquakes within ±0.05° , perpendicular to profile; e-f) δ(VP/VS) profiles, also showing the same set

of earthquakes to the corresponding plot above.
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Figure 7. Schematic interpretation of the structure of the fault. The shadowed area represents the possible

variability of the fault shear zone along the profiles, while the yellow lines beneath the SNAF denote the

area of influence of the fault as inferred from local seismicity (Altuncu-Poyraz et al. [2015]), VP/VS results

and results from receiver function analysis (Kahraman et al. [2015]). Blue, red and green dashed lines are

results from receiver function analysis (Kahraman et al. [2015]) and represent crustal structures, the Moho

and anisotropic layers respectively. The shaded blue area represents the high velocity zone observed between

NNAF and SNAF and likely associated with ultramafic rocks upthrusted from the Sakarya Zone (Bozkurt et

al. [2013])
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