39,942 research outputs found

    Tunable-filter imaging of quasar fields at z ~ 1. II. The star-forming galaxy environments of radio-loud quasars

    Full text link
    We have scanned the fields of six radio-loud quasars using the Taurus Tunable Filter to detect redshifted [OII] 3727 line-emitting galaxies at redshifts 0.8 < z < 1.3. Forty-seven new emission-line galaxy (ELG) candidates are found. This number corresponds to an average space density about 100 times that found locally and, at L([OII]) < 10^{42} erg s^{-1} cm^{-2}, is 2 - 5 times greater than the field ELG density at similar redshifts, implying that radio-loud quasars inhabit sites of above-average star formation activity. The implied star-formation rates are consistent with surveys of field galaxies at z ~ 1. However, the variation in candidate density between fields is large and indicative of a range of environments, from the field to rich clusters. The ELG candidates also cluster -- both spatially and in terms of velocity -- about the radio sources. In fields known to contain rich galaxy clusters, the ELGs lie at the edges and outside the concentrated cores of red, evolved galaxies, consistent with the morphology-density relation seen in low-redshift clusters. This work, combined with other studies, suggests that the ELG environments of powerful AGN look very much the same from moderate to high redshifts, i.e. 0.8 < z < 4.Comment: 18 pages, 18 figures, uses emulateapj.cls. Accepted for publication in A

    Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations

    Get PDF
    Abstract The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\u27s radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 ± 0.5). This reveals graphically that both competing mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession. Key Points Clear observations to higher energy than ever before Precise detection of where and how acceleration takes place Provides new eyes on megaelectron Volt

    Confinement: Understanding the Relation Between the Wilson Loop and Dual Theories of Long Distance Yang Mills Theory

    Get PDF
    In this paper we express the velocity dependent, spin dependent heavy quark potential VqqˉV_{q\bar q} in QCD in terms of a Wilson Loop W(Γ)W(\Gamma) determined by pure Yang Mills theory. We use an effective dual theory of long-distance Yang Mills theory to calculate W(Γ)W(\Gamma) for large loops; i.e. for loops of size R>RFTR > R_{FT}. (RFTR_{FT} is the flux tube radius, fixed by the value of the Higgs (monopole) mass of the dual theory, which is a concrete realization of the Mandelstam 't Hooft dual superconductor mechanism of confinement). We replace W(Γ)W(\Gamma) by Weff(Γ)W_{eff}(\Gamma), given by a functional integral over the dual variables, which for R>RFTR > R_{FT} can be evaluated by a semiclassical expansion, since the dual theory is weakly coupled at these distances. The classical approximation gives the leading contribution to Weff(Γ)W_{eff}(\Gamma) and yields a velocity dependent heavy quark potential which for large RR becomes linear in RR, and which for small RR approaches lowest order perturbative QCD. This latter fact means that these results should remain applicable down to distances where radiative corrections giving rise to a running coupling constant become important. The spin dependence of the potential reflects the vector coupling of the quarks at long range as well as at short range. The methods developed here should be applicable to any realization of the dual superconductor mechanism. They give an expression determining Weff(Γ)W_{eff}(\Gamma) independent of the classical approximation, but semi classical corrections due to fluctuations of the flux tube are not worked out in this paper. Taking these into account should lead to an effective string theory free from the conformal anomaly.Comment: 39 pages, latex2e, 1 figure(fig.eps

    Kinetic cross coupling between non-conserved and conserved fields in phase field models

    Get PDF
    We present a phase field model for isothermal transformations of two component alloys that includes Onsager kinetic cross coupling between the non-conserved phase field and the conserved concentration field. We also provide the reduction of the phase field model to the corresponding macroscopic description of the free boundary problem. The reduction is given in a general form. Additionally we use an explicit example of a phase field model and check that the reduced macroscopic description, in the range of its applicability, is in excellent agreement with direct phase field simulations. The relevance of the newly introduced terms to solute trapping is also discussed

    Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

    Get PDF
    Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs

    Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP

    Get PDF
    The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth\u27s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related “magnetic clouds” at 1 AU. As these CME/cloud systems interact with the Earth\u27s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27–29, 1996, and January 10–11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields (∂B/∂t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event
    • 

    corecore