97 research outputs found

    Magnetic field inference in active region coronal loops using coronal rain clumps

    Get PDF
    Aims. We aim to infer information about the magnetic field in the low solar corona from coronal rain clumps using high-resolution spectropolarimetric observations in the Ca II 8542 Å line obtained with the Swedish 1 m Solar Telescope. Methods. The weak-field approximation (WFA) provides a simple tool to obtain the line-of-sight component of the magnetic field from spectropolarimetric observations. We adapted a method developed in a previous paper in order to assess the different conditions that must be satisfied in order to properly use the WFA for the data at hand. We also made use of velocity measurements in order to estimate the plane-of-the-sky magnetic field component, so that the magnetic field vector could be inferred. Results. We have inferred the magnetic field vector from a data set totalling 100 spectral scans in the Ca II 8542 Å line, containing an off-limb view of the lower portion of catastrophically cooled coronal loops in an active region. Our results, albeit limited by the cadence and signal-to-noise ratio of the data, suggest that magnetic field strengths of hundreds of Gauss, even reaching up to 1000 G, are omnipresent at coronal heights below 9 Mm from the visible limb. Our results are also compatible with the presence of larger magnetic field values such as those reported by previous works. However, for large magnetic fields, the Doppler width from coronal rain is not that much larger than the Zeeman width, thwarting the application of the WFA. Furthermore, we have determined the temperature, T, and microturbulent velocity, ξ, of coronal rain clumps and off-limb spicules present in the same data set, and we have found that the former ones have narrower T and ξ distributions, their average temperature is similar, and coronal rain has microturbulent velocities smaller than those of spicules

    Spatially resolved signatures of bidirectional flows observed in inverted-Y shaped jets

    Get PDF
    Numerous apparent signatures of magnetic reconnection have been reported in the solar photosphere, including inverted-Y shaped jets. The reconnection at these sites is expected to cause localized bidirectional flows and extended shock waves; however, these signatures are rarely observed as extremely high spatial-resolution data are required. Here, we use Hα imaging data sampled by the Swedish Solar Telescope's CRisp Imaging SpectroPolarimeter to investigate whether bidirectional flows can be detected within inverted-Y shaped jets near the solar limb. These jets are apparent in the Hα line wings, while no signature of either jet is observed in the Hα line core, implying reconnection took place below the chromospheric canopy. Asymmetries in the Hα line profiles along the legs of the jets indicate the presence of bidirectional flows, consistent with cartoon models of reconnection in chromospheric anemone jets. These asymmetries are present for over two minutes, longer than the lifetimes of Rapid Blue Excursions, and beyond ±1 Å into the wings of the line indicating that flows within the inverted-Y shaped jets are responsible for the imbalance in the profiles, rather than motions in the foreground. Additionally, surges form following the occurrence of the inverted-Y shaped jets. This surge formation is consistent with models, which suggests such events could be caused by the propagation of shock waves from reconnection sites in the photosphere to the upper atmosphere. Overall, our results provide evidence that magnetic reconnection in the photosphere can cause bidirectional flows within inverted-Y shaped jets and could be the driver of surges

    On the properties of slow mhd sausage waves within small-scale photospheric magnetic structures

    Get PDF
    The presence of magneto-acoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magneto-acoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope (DOT) and Rapid Oscillations in the Solar Atmosphere (ROSA) instruments, we captured two series of high-resolution intensity images with short cadence of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Further, we determined several key properties of these oscillations such as the radial velocity perturbation, magnetic field perturbation and vertical wavenumber using solar magnetoseismology. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and, this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4-12

    Photospheric observations of surface and body modes in solar magnetic pores

    Get PDF
    Over the past number of years, great strides have been made in identifying the various low-order magnetohydrodynamic wave modes observable in a number of magnetic structures found within the solar atmosphere. However, one aspect of these modes that has remained elusive, until now, is their designation as either surface or body modes. This property has significant implications for how these modes transfer energy from the waveguide to the surrounding plasma. Here, for the first time to our knowledge, we present conclusive, direct evidence of these wave characteristics in numerous pores that were observed to support sausage modes. As well as outlining methods to detect these modes in observations, we make estimates of the energies associated with each mode. We find surface modes more frequently in the data, as well as that surface modes appear to carry more energy than those displaying signatures of body modes. We find frequencies in the range of ~2–12 mHz, with body modes as high as 11 mHz, but we do not find surface modes above 10 mHz. It is expected that the techniques we have applied will help researchers search for surface and body signatures in other modes and in differing structures from those presented here

    Effects of Steady Flow on Magnetoacoustic-Gravity Surface Waves: I. The Weak Field Case

    Get PDF
    Magnetoacoustic gravity (MAG) waves have been studied for some time. In this article, we investigate the effect that a shear flow at a tangential discontinuity embedded in a gravitationally stratified and magnetised plasma has on MAG surface waves. The dispersion relation found is algebraically analogous to the relation of the non-flow cases obtained by Miles and Roberts (Solar Phys.141, 205, 1992), except for the introduction of a Doppler-shifted frequency for the eigenvalue. This feature, however, introduces rather interesting physics, including the asymmetric presence of forward- and backward-propagating surface waves. We find that increasing the equilibrium flow speed leads to a shift in the permitted regions of propagation for surface waves. For most wave number combinations this leads to the fast mode being completely removed, as well as more limited phase speed regimes for slow-mode propagation. We also find that upon increasing the flow, the phase speeds of the backward propagating waves are increased. Eventually, at high enough flow speeds, the wave’s direction of propagation is reversed and is in the positive direction. However, the phase speed of the forward-propagating wave remains mainly the same. For strong enough flows we find that the Kelvin–Helmholtz instability can also occur when the forward- and backward-propagating modes couple

    Standing sausage waves in photospheric magnetic waveguides

    Get PDF
    By focusing on the oscillations of the cross-sectional area and the intensity of magnetic waveguides located in the lower solar atmosphere, we aim to detect and identify magnetohydrodynamic (MHD) sausage waves. Capturing several series of high-resolution images of pores and sunspots and employing wavelet analysis in conjunction with empirical mode decomposition (EMD) makes the MHD wave analysis possible. For this paper, two sunspots and one pore (with a light bridge) were chosen as representative examples of MHD waveguides in the lower solar atmosphere. The sunspots and pore display a range of periods from 4 to 65 minutes. The sunspots support longer periods than the pore - generally enabling a doubling or quadrupling of the maximum pore oscillatory period. All of these structures display area oscillations indicative of MHD sausage modes and in-phase behaviour between the area and intensity, presenting mounting evidence for the presence of the slow sausage mode within these waveguides. The presence of fast and slow MHD sausage waves has been detected in three different magnetic waveguides in the lower solar photosphere. Furthermore, these oscillations are potentially standing harmonics supported in the waveguides which are sandwiched vertically between the temperature minimum in the lower solar atmosphere and the transition region. Standing harmonic oscillations, by means of solar magneto-seismology, may allow insight into the sub-resolution structure of photospheric MHD waveguides

    An Inside Look at Sunspot Oscillations with Higher Azimuthal Wavenumbers

    Get PDF
    Solar chromospheric observations of sunspot umbrae offer an exceptional view of magneto-hydrodynamic wave phenomena. In recent years, a wealth of wave signatures related to propagating magneto-acoustic modes have been presented, which demonstrate complex spatial and temporal structuring of the wave components. Theoretical modelling has demonstrated how these ubiquitous waves are consistent with an m=0 slow magneto-acoustic mode, which are excited by trapped sub-photospheric acoustic (p-mode) waves. However, the spectrum of umbral waves is broad, suggesting that the observed signatures represent the superposition of numerous frequencies and/or modes. We apply Fourier filtering, in both spatial and temporal domains, to extract chromospheric umbral wave characteristics consistent with an m=1 slow magneto-acoustic mode. This identification has not been described before. Angular frequencies of 0.037 +/- 0.007 rad/s (2.1 +/- 0.4 deg/s), corresponding to a period approximately 170 s for the m=1 mode are uncovered for spatial wavenumbers in the range of 0.45<k<0.90 arcsec^-1 (5000-9000 km). Theoretical dispersion relations are solved, with corresponding eigenfunctions computed, which allows the density perturbations to be investigated and compared with our observations. Such magnetohydrodynamic modelling confirms our interpretation that the identified wave signatures are the first direct observations of an m=1 slow magneto-acoustic mode in the chromospheric umbra of a sunspot

    The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Get PDF
    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase-difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upwards. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects

    The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package

    Get PDF
    The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project

    Observations and mode identification of sausage waves in a magnetic pore

    Get PDF
    Aims. We aim to determine the phase speed of an oscillation in a magnetic pore using only intensity images at one height. The observations were obtained using the CRisp Imaging SpectroPolarimeter at the Swedisch 1-m Solar Telescope and show variations in both cross-sectional area and intensity in a magnetic pore. Methods. We have designed and tested an observational method to extract the wave parameters that are important for seismology. We modelled the magnetic pore as a straight cylinder with a uniform plasma both inside and outside the flux tube and identify different wave modes. Using analytic expressions, we are able to distinguish between fast and slow modes and obtain the phase speed of the oscillations. Results. We found that the observed oscillations are slow modes with a phase speed around 5 km s-1. We also have strong evidence that the oscillations are standing harmonics
    corecore