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Abstract Magnetoacoustic gravity (MAG) waves have been studied for some time. In this
article, we investigate the effect that a shear flow at a tangential discontinuity embedded in a
gravitationally stratified and magnetised plasma has on MAG surface waves. The dispersion
relation found is algebraically analogous to the relation of the non-flow cases obtained by
Miles and Roberts (Solar Phys. 141, 205, 1992), except for the introduction of a Doppler-
shifted frequency for the eigenvalue. This feature, however, introduces rather interesting
physics, including the asymmetric presence of forward- and backward-propagating surface
waves. We find that increasing the equilibrium flow speed leads to a shift in the permitted
regions of propagation for surface waves. For most wave number combinations this leads
to the fast mode being completely removed, as well as more limited phase speed regimes
for slow-mode propagation. We also find that upon increasing the flow, the phase speeds
of the backward propagating waves are increased. Eventually, at high enough flow speeds,
the wave’s direction of propagation is reversed and is in the positive direction. However, the
phase speed of the forward-propagating wave remains mainly the same. For strong enough
flows we find that the Kelvin–Helmholtz instability can also occur when the forward- and
backward-propagating modes couple.

Keywords Flow · Dynamics · Waves · Magnetic fields · Kelvin–Helmholtz

1. Introduction

Wave phenomena that can be modelled as surface waves are ubiquitous in nature. They may
occur when a medium changes properties at an interface, with perturbations of largest am-
plitude at the interface (surface) and perturbations decaying away from the surface. In a
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magnetohydrodynamic (MHD) sense, the change in magnetic field (or other properties e.g.
density, temperature, etc.) of a plasma at an interface can lead to perturbations propagat-
ing along the interface in the form of magnetoacoustic surface waves (Roberts, 1981a,b).
If the plasma is embedded in a gravitational field (perpendicular to the magnetic field),
magnetoacoustic-gravity (MAG) surface waves can occur (Miles and Roberts, 1992). These
surface waves are of considerable interest in a solar context e.g. for coronal heating or os-
cillations in sunspot penumbrae (see e.g. Giovanelli, 1972 or for more recent studies Freij
et al., 2014).

Many plasmas in nature, however, do not exhibit static equilibria, and for the most part,
are dynamical; strong background equilibrium flows may occur. For example, the interior
of the Sun is highly dynamical, exhibiting large-scale flows, e.g. differential rotation; close
to the surface, meridional flows; and small-scale flows of the surface e.g. penumbral flows
(Evershed flow). As a next step, it is therefore sensible to study magnetoacoustic surface
waves in such media considering the effect of flow. The addition of a uniform steady flow
in a uniform and infinite medium will just lead to the Doppler shift of the wave frequencies.
However, any variations in the medium (e.g. discontinuities or smooth variations) or in the
steady flow affect the surface wave propagation to a greater and more complex extent.

In this study, we investigate the effect of a steady flow at a tangential discontinuity. The
equilibrium plasma is similar to that given in Miles and Roberts (1992), but with a steady
flow added to the bottom layer. This configuration may represent a simple view of large-scale
convection or meridional flows affecting surface MHD waves that are present at the interface
of the solar interior-atmosphere. A shear flow at a tangential discontinuity can be of impor-
tance in the stability of surfaces in hydrodynamic and MHD theory. A shear flow can lead
to the Kelvin–Helmholtz instability: when the shear in flow is great enough, a forward- and
backward-propagating wave couple together, causing the instability (Chandrasekhar, 1961).
The negative-energy wave instability (Ryutova, 1988, Ruderman and Goossens, 1995, Ru-
derman and Wright, 1998, Tirry et al., 1998, Taroyan and Erdélyi, 2002) can occur for
lower flow shears than this, however, making it an interesting area of study. This instability
is intimately linked to the so-called dissipative instability (Ruderman et al., 1996, Erdélyi
and Taroyan, 2003), where the “negative energy” (i.e. energy loss) is due to some form of
dissipation being present in the system.

At a tangential discontinuity the flow can affect which magnetoacoustic waves are able
to propagate, as the cutoffs, determining the propagation window (i.e. changes from non-
leaky to leaky modes), can be shifted. This was demonstrated in Nakariakov and Roberts
(1995) and Terra-Homem, Erdélyi, and Ballai (2003). For a certain range of flow parameters,
the fast wave in a magnetic slab could not propagate. Furthermore, in general, the phase
speed of a wave propagating in the direction of the flow is increased to a small extent by
the bulk motion (in comparison to the same wave in the static medium), whereas a wave
propagating in the counter-flow direction would be decelerated to a much greater extent. If
the flow is strong enough, then the phase speed of this latter so-called backward-propagating
wave can be increased enough for the direction of its propagation to change. In terms of the
stability of a tangential discontinuity, this change in direction of the propagation can be of
great importance, e.g. leading to the phenomenon of negative-energy waves (see e.g. Joarder,
Nakariakov, and Roberts, 1997, Terra-Homem, Erdélyi, and Ballai, 2003).

The article is set out as follows. In Section 2 the background equilibrium is outlined,
along with the general governing equations and the more simplified governing equations for
each layer in the model. The dispersion relation for this model is also derived by imple-
menting the relevant boundary conditions. The incompressible and small wavelength limit
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are noted here. In Section 3 the cutoff curves defining the domains (i.e. windows) of prop-
agation are introduced and a subsequent numerical analysis of the dispersion relation is
performed. In Section 4 we conclude.

2. Dispersion Relation

2.1. Governing Equation

Consider a plane-parallel background plasma stratified by gravity. Embedded within this
plasma is a magnetic field perpendicular to the axis of stratification, i.e. the z-axis. The
plasma has kinetic pressure p(z), density ρ(z), and a steady horizontal flow along the
x-axis u(z) = (u(z),0,0). The gravitational force points in the negative z-direction, g =
(0,0,−g). The magnetic field points in the positive x-direction and can vary arbitrarily in
the z-direction, B(z) = (B(z),0,0). The magnetohydrostatic balance is achieved by satis-
fying the condition

d

dz

(
p(z) + B2(z)

2μ0

)
= −gρ(z). (1)

In a compressible ideal plasma, two-dimensional, linear, isentropic disturbances about
the equilibrium take the form

ξ(x, z, t) = (
ξ̂x(z),0, ξ̂z(z)

)
ei(kxx−ωt) (2)

for frequency ω and horizontal wave-number kx and satisfy the second-order ordinary dif-
ferential equation

d

dz

[
ρ(z)(c2

s (z) + v2
A(z))(�2(z) − c2

T(z)k2
x)

�2(z) − c2
s (z)k

2
x

d̂ξz(z)

dz

]

+
⌈
ρ(z)

(
�2(z) − v2

A(z)k2
x

)

− g2k2
xρ(z)

�2(z) − c2
s (z)k

2
x

− d

dz

(
gk2

xρ(z)c2
s (z)

�2(z) − c2
s (z)k

2
x

)⌋
ξ̂z(z) = 0, (3)

where γ = 5/3 is the adiabatic index, and μ0 is the magnetic permeability of free-space.
Here,

cs(z) =
(

γp(z)

ρ(z)

)1/2

(4)

is the sound speed,

vA(z) = B(z)

(μ0ρ(z))1/2
(5)

is the Alfvén speed,

cT(z) = cs(z)vA(z)

(c2
s (z) + vA(z)2)1/2

(6)
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Figure 1 Equilibrium model of
a single magnetic interface at
z = 0 in a gravitationally
stratified atmosphere, with an
exponentially decreasing
horizontal magnetic field, B0(z),
in z > 0 and a horizontal constant
equilibrium flow, ue, in z < 0.
The temperatures T0 and Te
either side of the interface are
approximated as isothermal.

is the tube speed, and

�(z) = ω − u(z)kx (7)

is the Doppler-shifted wave frequency.

2.2. Equilibrium

We assume a single magnetic interface located at z = 0. The upper isothermal (with temper-
ature T0) region (z > 0) is permeated by an exponentially decreasing horizontal magnetic
field B0(z) with the assumption that the Alfvén speed (vA) is constant. The field-free lower
region (z < 0) is also isothermal (but of a different temperature, Te) with a parallel constant
steady flow ue.

Quantities above the interface (in z > 0) are denoted by the subscript ‘0’, and quantities
below (in z < 0) by the subscript ‘e’ (see Figure 1):

T (z), cs(z), vA(z), u(z) =
{

T0, cs0, vA,0, z > 0,

Te, cse,0, ue, z < 0,
(8)

where T0, Te, cs0, cse, vA, and ue are all constants. Here, cs0 = (γp0/ρ0)
1/2 and vA =

B0/(μ0ρ0)
1/2 are the sound and Alfvén speeds in the magnetic atmosphere, respectively,

and cse = (γpe/ρe)
1/2 is the sound speed in the field-free region. The following notations

are made: ρ0 = ρ0(0+), ρe = ρe(0−), p0 = p0(0+), pe = pe(0−), and B0 = B0(0+).
The ideal gas law (supplemented by Equation (1) showing that the background varies in

the z-direction) gives the relationship between the equilibrium pressure, density, and tem-
perature:

p(z) = kB

mav
ρ(z)T (z), (9)

where kB is Boltzmann’s constant, and mav the mean particle mass of the plasma. This
equation, coupled with the conditions that the sound and Alfvén speeds are constants and
that both plasmas are isothermal, yields density and magnetic field profiles with forms

ρ(z),B(z) =
{

ρ0e−z/HB ,B0e−z/2HB , z > 0,

ρee−z/He ,0, z < 0.
(10)
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Here, HB = c2
s0/�g and He = c2

se/γg are the isothermal density scale-heights above and
below the interface, respectively, and

� = 2γβ

γ + 2β
(11)

is the magnetically modified adiabatic exponent with β = c2
s0/v

2
A. We note that in the limit

of zero magnetic field � = γ and HB = H0 = c2
s0/γg.

2.3. Region with Magnetic Field

Applying Equation (3) to the region with magnetic field (z > 0) results in the second-order
differential equation

d2ξ̂z(z)

dz2
− 1

HB

d̂ξz(z)

dz
+ ABξ̂z(z) = 0, z > 0, (12)

where

AB = (� − 1)g2k2
x + (ω2 − k2

xc
2
s0)(ω

2 − k2
xv

2
A)

(c2
s0 + v2

A)(ω2 − k2
xc

2
T)

. (13)

Equation (12) has constant coefficients and possesses the general solution

ξ̂z(z) = d1 exp

(
1

2HB

+ M0

)
z + d2 exp

(
1

2HB

− M0

)
z, z > 0, (14)

where

M0 =
√

1 − 4ABH 2
B

2HB

, (15)

and d1 and d2 are arbitrary constants.

2.4. Non-Magnetic Region with Background Flow

In the field-free region with the equilibrium bulk motion (z < 0), Equation (3) reduces to

d2ξ̂z(z)

dz2
− 1

He

d̂ξz(z)

dz
+ Aêξz(z) = 0, z < 0, (16)

where

Ae = (γ − 1)g2k2
x + �2(�2 − k2

xc
2
se)

�2c2
se

, (17)

with

� = ω − kxue. (18)

Equation (16) possesses the general solution

ξ̂z(z) = d3 exp

(
1

2He
+ Me

)
z + d4 exp

(
1

2He
− Me

)
z, z < 0, (19)
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where

Me =
√

1 − 4AeH 2
e

2He
, (20)

and d3 and d4 are arbitrary constants.

2.5. General Dispersion Relation

We require that the total kinetic [ρ(z)û2
1z(z)] plus magnetic [B0(z)B

′
0(z)û1z(z) +

B2
0 (z)u′

1z(z)] energy density remains finite as |z| → ∞, while we assume that 4ABH 2
B < 1

and 4AeH
2
e < 1 (see Section 3.1 for a discussion on these latter conditions). Here,

û1z(z) = iξ̂z(z)

�(z)
. (21)

These conditions imply that d1 = d4 = 0. Thus, the amplitude of the vertical Lagrangian
displacement component, ξ̂z(z), in the two regions is given by

ξ̂z(z) =
{

d2 exp( 1
2HB

− M0)z, z > 0,

d3 exp( 1
2He

+ Me)z, z < 0.
(22)

Equation (22) implies that ξ̂z(z) → 0 as z → −∞, i.e. û1z(z) is exponentially diminishing
for z < 0. However, for z > 0 ξ̂z(z) is exponentially decreasing only if AB < 0 (see Equa-
tion (15)), elsewhere it is exponentially growing with height.

The boundary conditions to be applied are the continuity of the vertical component of
the Lagrangian displacement and the continuity of the Lagrangian perturbation of total (gas
plus magnetic) pressure across the interface at z = 0:

{̂
ξz(z)

}
z=0

= 0, (23)
{
p̂T1(z) − ρ(z)gξ̂z(z)

}
z=0

= 0, (24)

where

p̂T1(z) = −ρ(z)
(c2

s (z) + v2
A(z))(�2(z) − k2

xc
2
T(z))

�2(z) − k2
xc

2
s (z)

d̂ξz(z)

dz
+ �2(z)gρ(z)

�2(z) − k2
xc

2
s (z)

ξ̂z(z) (25)

is the Eulerian perturbation of total pressure. Applying the two matching conditions, Equa-
tions (23) and (24), to solution (22), we obtain the transcendental dispersion relation

ρ0(c
2
s0 + v2

A)(ω2 − c2
Tk2

x)

ω2 − c2
s0k

2
x

(
M0 − 1

2HB

)
+ ρ0gk2

xc
2
s0

ω2 − c2
s0k

2
x

= ρec
2
se

�2 − c2
sek

2
x

[
gk2

x −
(

1

2He
+ Me

)
�2

]
, (26)

where cT = cs0vA/(c2
s0 + v2

A)1/2 is the tube speed in the magnetic atmosphere. Equation (26)
describes the parallel propagation of surface waves at a single magnetic interface in a gravi-
tationally stratified atmosphere under the assumption of constant Alfvén speed in the upper
isothermal magnetic region and a constant flow in the field-free lower isothermal region.
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2.6. Incompressible Limit

Equation (26) can be written in a more useful and familiar form:

ω2

k2
x

= ρ0

ρ0 + ρe
(Me+1/2He)m0
(M0−1/2HB)me

v2
A − g

ρ0c2
s0

(ω2−c2
s0k2

x )
− ρec

2
se

(�2−c2
sek

2
x )

ρ0
(M0−1/2HB)

m0
+ ρe

(Me+1/2He)

me

, (27)

where

m0 = (ω2 − v2
Ak2

x)(ω
2 − c2

s0k
2
x)

(c2
s0 + v2

A)(ω2 − c2
Tk2

x)
, (28)

and

me = (�2 − c2
sek

2
x)ω

2

c2
se�

2
. (29)

In the incompressible limit, the sound speeds in both layers tend towards infinity, i.e.
cs0, cse → ∞. Therefore me → −k2

xω
2/�2, m0 → −k2

x and Me,M0 → kx . Taking the spe-
cial case of uniform distributions of density, such that ρ0(z) = ρ0 and ρe(z) = ρe as in Sen-
gottuvel and Somasundaram (2001), Equation (27) reduces to the second-order polynomial
for the horizontal phase speed (ω/kx ):

(
ω

kx

)2

− 2ue

1 + ρr

ω

kx

+
(

u2
e

1 + ρr
− v2

Aρr

1 + ρr
+ g

kx

(
1 − ρr

1 + ρr

))
= 0. (30)

Here, ρr = ρ0/ρe. When we solve Equation (30), the solution for the phase speed can be
written as

ω

kx

= ue

1 + ρr

[
1 ±

{
ρr

(
(1 + ρr)(v

2
Aρr + g

kx
(1 − ρr))

ρru2
e

− 1

)}1/2]
. (31)

This dispersion relation agrees well with that derived in Sengottuvel and Somasundaram
(2001), except that their flow is in the upper layer. A simple Galilean transformation shows
a full algebraic agreement. It is immediately evident from Equation (31) that when the term
inside the square root becomes lower than zero, instability occurs. This can be written in the
form of an inequality,

(1 + ρr)

(
v2

A + g

kx

(1 − ρr)

ρr

)
< u2

e . (32)

The critical wave number (denoted kx,c) for the Kelvin–Helmholtz instability is then given
by

kx,c = (1 − ρr)g

ρr(u2
e − v2

Aρr)
. (33)

Clearly, if the plasma in the top layer is lighter than the plasma in the bottom layer, then
u2

e > v2
Aρr such that kx,c is positive. The associated critical phase speed (denoted vph,c) at

which the Kelvin–Helmholtz instability occurs is given by

vph,c = ue

1 + ρr
. (34)
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2.7. Small Wavelength (kxHe → ∞) and Cold Plasma (β = 0) Limit

If the limit as kxHe → ∞ of Equation (26) is taken, then it reduces to the following equation:

ρ2
r

(ω̂2 − v̂2
A)(ω̂2 − ĉ2

T)(̂c2
s0 + v̂2

A)

ω̂2 − ĉ2
s0

= �̂4

�̂2 − 1
. (35)

Here we have introduced the following dimensionless quantities, whilst also noting the di-
mensionless flow speed for later:

ω̂ = ω

kxcse
, �̂ = �

kxcse
, v̂A = vA

cse
, ĉs0 = cs0

cse
, ĉT = cT

cse
, ûe = ue

cse
. (36)

We note that Equation (35) is derived by squaring terms so that spurious roots may have
developed. This equation is still transcendental, however, therefore the cold plasma (i.e.
cs0 = 0) limit is taken for analytic progress. This removes the slow surface mode, but the
fast mode is retained. When this limit is applied, Equation (35) results in the following
fourth-order polynomial in �:

�̂4

(
1 − 2ρr

γ

)
− 4ρrûe

γ
�̂3 − �̂2

(
2ρr

γ
û2

e − 4

γ 2
− 2ρr

γ

)
+ 4ρrûe

γ
�̂ +

(
2ρrû

2
e

γ
− 4

γ 2

)
= 0.

(37)

Pressure balance in this limit gives v̂2
A = 2/ρrγ . Again, Equation (37) is still too difficult to

solve analytically. Two separate approximations to Equation (37) are then taken for analytic
progress:

1. The limit of small flow i.e. ûe = ε, where ε � 1.
2. A large discontinuity in density i.e. ρr = ε, where ε � 1.

2.7.1. Limit of Small Flow

In the limit of small flow, the frequency is approximated as

ω̂ = ±�̂0 + ûe
�̂2

0(2 − ρ2
r v̂

2
A) + ρ2

r v̂
2
A

ρrv̂
2
A(ρ2

r (1 − v̂2
A)2 + 4)1/2

+ O
(̂
u2

e

)
, (38)

where

�̂2
0 = −ρ2

r v̂
2
A(1 + v̂2

A)

2(1 − ρ2
r v̂

2
A)

(
1 −

(
1 + 4(1 − ρ2

r v̂
2
A)

ρ2
r (1 + v̂2

A)2

)1/2)
. (39)

Equation (38) must satisfy the following conditions for surface waves to exist:

(1) ω̂2 < v̂2
A, (2) �̂2 < 1.

As there is gravity in the system, the density ratio can only range between the values of zero
and one, i.e. 0 ≤ ρr ≤ 1. We therefore have a minimum value of v̂2

A = 2/γ . This is greater
than one (taking the value of the adiabatic index, γ , to be 5/3), and therefore we only need
to fulfil condition (2) above. We find that solutions do not exist for �̂2

0 = 1 and that the
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Figure 2 The upper panel shows the frequency computed from Equation (38). The lower panel shows the
corresponding frequency shift (
ω̂) that is due to the small flow contribution. The legend indicates the lines
that correspond to the values ue = 0.0,0.01, and 0.1. The adiabatic index, γ , is taken to be 5/3.

function �̂2
0(ρr), from Equation (39), is continuous. If a value for �̂2

0 can be found that is
lower than one, then all values of �̂2

0 must be lower than one. In the limit ρr → 0,

�̂2
0 = − 2

γ 2

(
1 − (

1 + γ 2
)1/2)

≈ 0.68. (40)

Surface waves exist in this limit, and therefore surface waves must exist everywhere for
ûe = 0. The upper part of Figure 2 plots the frequencies calculated from Equation (38)
against the ratio of the density in the upper layer to the density in the lower layer for three
values of the flow, ûe = 0.0,0.01, and 0.1. The lower part of the figure shows the corre-
sponding frequency shift for both the backward- and forward-propagating waves. The fre-
quencies clearly do not rise above the value of 1.0 and therefore satisfy the surface waves
condition. The forward-propagating wave is accelerated in its direction of propagation,
whereas the backward wave is decelerated.

2.7.2. Limit of Low Density Ratio

In the limit of a low density ratio between the layers, the frequency can be approximated by
the following equation:

ω̂ = (±�̂0 + ûe)

(
1 ± ρr

γ (�̂2
0 − 1)(±�̂0 + ûe)

4�̂0(±(1 + γ 2)1/2)

)
. (41)
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Figure 3 The upper left panel shows the frequency plotted against dimensionless flow speed, ûe, for the
forward-propagating solution. The upper right panel is the same, but for the backward-propagating solution.
The two panels at the bottom depict the frequency shift for the forward- and backward-propagating solutions
on the left and right, respectively. Each diagram has been plotted for separate values of the density ratio, ρr.
The adiabatic index, γ , is taken to be 5/3.

Here,

�̂0 =
(

2(−1 ± (1 + γ 2)1/2)

γ 2

)1/2

. (42)

Equation (42) is the Doppler-shifted frequency, which means that it therefore is the fre-
quency when there is no flow present. This equation agrees with the equation given in
Roberts (1981b), which was derived for surface waves at a magnetic interface with the
same structure as in this article, but with neither flow nor stratification (the kxHe → ∞
limit is equivalent to the zero-gravity limit). The approximations taken in that article were
vA � cs0, cse. This is equivalent to the cold plasma approximation with a low density ratio
taken here.

Again, the frequency satisfies the condition of surface waves to zeroth order. Fig-
ure 3 shows the frequencies given by Equation (41) for both the forward- and backward-
propagating solutions, varying with dimensionless flow speed, ûe. Figure 3 also depicts the
corresponding frequency shift associated with the changing flow.

The frequency for both the backward and forward waves increases linearly with the flow,
as does the frequency shift. When the density ratio is increased, the frequency shift for the
backward-propagating wave is largely unaffected. However, for the forward-propagating
wave, the frequency shift is slightly lowered. For a high enough flow speed the backward-
propagating wave can change its direction of propagation, as shown by Figure 3, when it
takes a positive value of ω̂.
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3. Numerical Solution of the Dispersion Relation

3.1. Cut-off Curves

The dispersion relation, Equation (26), is solved subject to the constraints that ω 	= ±kxcs0,
ω 	= kx(ue ± cse) and that

1 − 4ABH 2
B > 0 and 1 − 4AeH

2
e > 0. (43)

These two latter constraints are required for surface wave solutions, i.e. evanescent (non-
propagating) modes in the z direction. This means that in the ω–kx plane these constraints
(where both are fulfilled) determine those permitted regions of the (ω, kx) parameter space
of propagation where magnetoacoustic-gravity surface modes given by Equation (26) may
propagate. The boundary curves to these regions represent cut-off curves (cut-off frequen-
cies) for the modes. Outside these regions, where either (1 − 4ABH 2

B) or (1 − 4AeH
2
e ) is

negative, spatially oscillating leaky-modes arise in which we are not interested.
The condition 1 − 4AeH

2
e > 0 gives rise to the cut-off curves R1, R2, R3, and R4 given

by

R1,2 = ue/cse + P1,2, R3,4 = ue/cse − P2,1, (44)

where

P 2
1,2 =

1 + 4k2
xH

2
e ∓

√
(1 + 4k2

xH
2
e )2 − 64 γ−1

γ 2 k2
xH

2
e

8k2
xH

2
e

. (45)

We note that P2 > P1 > 0. The regions where 1 − 4AeH
2
e > 0 is satisfied are defined by

either

R1 <
ω

kxcse
< R2 (46)

or

R3 <
ω

kxcse
< R4. (47)

The other condition, 1 − 4ABH 2
B > 0, generates the cut-off curves R5 andR6, which satisfy

the equation

4
c4

s0
c4

se

�2

[� − 1 + γ 2k2
xH

2
e (R2

5,6 − c2
s0

c2
se

)(R2
5,6 − v2

A
c2

se
)

(
c2

s0
c2

se
+ v2

A
c2

se
)(R2

5,6 − c2
T

c2
se
)

]
= 1, (48)

(note that R6 > R5 > 0), and the regions where 1 − 4ABH 2
B > 0 is met are either

R6 <
ω

kxcse
<

cT

cse
, (49)

− cT

cse
<

ω

kxcse
< −R6, (50)

max

(
− cT

cse
,−R5

)
<

ω

kxcse
< min

(
cT

cse
,R5

)
, (51)

max

(
cT

cse
,R5

)
<

ω

kxcse
< R6, (52)
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or

−R6 <
ω

kxcse
< min

(
− cT

cse
,−R5

)
. (53)

We note that both positive and negative phase speed (ω/kx ) solutions of the dispersion rela-
tion are allowed. Now, considering the phase speed regions determined by Equations (46) –
(47) and (49) – (53), we can easily deduce the permitted regions where the two constraints
written in Equation (43) are fulfilled.

In the limit kxHe → ∞ (which is equivalent to g → 0), we obtain

R1 → ue

cse
, R2 → ue

cse
+ 1, (54)

R3 → ue

cse
− 1, R4 → ue

cse
, (55)

R5 → min

(
cs0

cse
,
vA

cse

)
, R6 → max

(
cs0

cse
,
vA

cse

)
. (56)

The cut-off curves are illustrated in the next section.

3.2. Numerical Results

We now examine modes resulting from the numerical solution of the dispersion relation,
Equation (26). The scope of the current work is to explore the effect of increasing flow
magnitude on the modes, ascending from the value of zero flow.

First of all, we recall that in the absence of gravity and flow, a magnetic interface may
support one or two surface modes (depending on the relative temperatures of the media
either side of the interface and on the strength of the magnetic field). These are the fast
and slow magnetoacoustic (MA) surface waves (Roberts, 1981b). Whereas the slow mode
is always present, the fast mode only appears when both vA > cs0 (i.e. the magnetic field is
strong enough to dominate the nature of the plasma within the magnetic region) and cse > cs0

(i.e. the field-free region is warmer than the magnetic atmosphere). When these conditions
are fulfilled, both waves have sub-Alfvénic phase-speeds (ω/kx ).

In the presence of gravity, the counterparts of MA modes arise, which are called
magnetoacoustic-gravity (MAG) surface modes. These are the fast and slow MA surface
modes modified by the gravity. For a detailed investigation see Miles and Roberts (1992).
However, when the field-free region is warmer than the magnetic medium (cse > cs0), there
also appears a third mode, the f -mode, which is modified by the magnetic field, although
for a limited range of the horizontal wavenumber. Miles and Roberts (1992) showed that as
the magnetic field strength is increased, the f -mode develops into the fast magnetoacoustic-
gravity surface mode. Furthermore, when vA > cs0 is satisfied, this solution merges with the
fast surface-wave solution of the non-stratified (g = 0) medium at very low wavelengths
(kxHe → ∞). On the other hand, when the magnetic medium is warmer than the field-free
region (cs0 > cse), the f -mode is replaced by a surface gravity wave.

Consider now the influence of a background equilibrium flow on the modes discussed
above. We solve the dispersion relation, Equation (26), numerically and plot the dimen-
sionless longitudinal phase speed, ω/kxcse, as a function of the dimensionless horizontal
wavenumber, kxHe. We set γ = 5/3 throughout.

Figure 4 shows solutions (thick lines) where cse > cs0 (specifically cs0/cse = 0.9), and
vA < cs0 (specifically vA/cse = 0.5), for six arbitrary but purposefully chosen values of the
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Figure 4 The dimensionless phase speed of MAG surface waves as a function of the dimensionless horizon-
tal wavenumber for cs0/cse = 0.9, vA/cse = 0.5 and (a) ue/cse = 0.0, (b) ue/cse = 0.2, (c) ue/cse = 0.65,
(d) ue/cse = 0.66, (e) ue/cse = 0.665, (f) ue/cse = 0.68. The grey regions bounded by the cutoff curves R1,
R2, R3, R4, ±R5, ±R6, ±cT/cse are regions where surface waves can propagate. Dark grey regions contain
modes for which the vertical velocity component is exponentially growing with height in the z > 0 region.
In the light grey regions modes have decreasing vertical velocities with height z. The asymptotes to which
the modes tend in the short-wavelength limit (kxHe → ∞) are shown as well. The effect of increasing flow
on the slow magnetoacoustic-gravity mode and the magnetically modified f -mode can be seen in panel (a).
Note that as the permitted regions of propagation shift upward, the f -modes vanish (panels (b), (c)). The
forward-propagating slow mode, while keeping its relatively constant position, is transferred to the permitted
region of the backward slow mode (panel (c)). The backward-propagating slow mode continues to shift up-
ward (panel (b)) and thus changes its direction of propagation (panel (c)), approaches and finally reaches the
upper slow mode and connects with it (panel (d)). The coupled slow modes form two branches, and the gap
between them continues to expand with growing flow (panels (d), (e)). After the asymptotes reach each other
and cancel out, only the lower branch of the coupled modes remains (panel (f)), which gradually disappears
as the flow increases.
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dimensionless flow, ue/cse, starting from zero up (Figures 4a – f). These parameters describe
a situation at the lower solar atmospheric region where the plasma is slightly hotter in the
lower layer. The plasma-beta value is approximately 0.98 and the density ratio (ρ0/ρe) is
0.98. These parameters can approximate the temperature minimum region in the solar pho-
tosphere embedded in an overlying horizontal magnetic field (e.g. in the higher parts of
the penumbra). The permitted regions of propagation for surface modes (see Section 3.1)
bounded by the cut-off curves R1, R2, R3, R4, ±R5, and ±R6 (shown as dashed lines) are
shaded grey. The dot-dashed line represents the curve AB = 0 (see Equation (13)) and di-
vides the region of evanescence in the upper medium (z > 0) into a region (shaded dark
grey) where the vertical velocity component is exponentially growing with height, z, (here
AB > 0), from a region (shaded light grey) where it decreases with height (here AB < 0). We
note again that in the lower region, z < 0, the vertical velocity component always becomes
smaller with height.

The dot-dashed horizontal lines in Figure 4 correspond to ω = ±kxcT and the dotted
horizontal lines correspond to the asymptotes to which the MAG surface modes tend as
kxHe → ∞. The limit kxHe → ∞ is equivalent to g → 0, where the asymptotes can be de-
termined by solving the non-gravity dispersion relation that is obtained from the dispersion
relation (26) in the limit of zero gravity.

We note that with the parameters chosen as cs0/cse = 0.9 and vA/cse = 0.5, only the slow
surface mode can propagate in the zero-gravity limit and therefore for large kxHe. Thus, in
Figure 4a (which corresponds to the static background case) we show that the slow MAG
mode (the fast mode is absent) is only present within the light grey region (AB < 0). At lower
wavenumbers (for a limited range of wavenumbers) the f -mode (modified by the magnetic
field) is visible. It lies entirely within the dark grey region (AB > 0) and therefore has a
growing vertical velocity in the upper medium (z > 0).

Modes with negative phase speeds correspond to waves propagating in the opposite,
backwards, direction. Here, in the static case, forward- (positive phase speed) and backward-
propagating (negative phase speed) waves are symmetrical counterparts to the ω/(kxcse) = 0
axis. In the remaining figures, we examine the effect of increasing the equilibrium flow on
the symmetrical modes of the static equilibrium.

The cut-off curves R1, R2, R3, and R4 are shifted upwards as the flow increases (see
Equation (44)), but the curves ±R5, ±R6 (Equation (48)) and AB = 0 (Equation (13)) do not
change their position. This results in a similar upward shift of the permitted regions of wave
propagation as well as in the deformation of their shape. We may observe that permitted
regions may disappear together with the modes propagating in them as, for example, in
Figures 4b, c where the f -modes vanish. New permitted regions may also appear, but it
does not necessarily follow that new modes also appear (see Figure 4c, where the permitted
regions bounded by the curves R1 and R6 and R5 and R4 appear without new modes).

The flow also modifies the frequency (and the phase speed) of the modes. However,
frequency shifts of various modes may differ in magnitude. In the series of panels from
Figure 4a – f, the backward-propagating slow mode shifts together with the flow and even
changes its direction of propagation, thus becoming a forward-propagating (in the same
direction as the flow) mode (see Figure 4c).

On the other hand, the forward-propagating slow mode mainly retains its position (i.e.
its phase speed), while the permitted regions “pass through” it as the flow changes. The
permitted region that originally contains this mode (bounded by the curves R1 and cT/cse)
gradually disappears as the flow increases (see Figures 4a, b), and in the end, the mode is
transferred to the permitted region containing the other slow mode “travelling upward” with
the flow (Figure 4c).
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Figure 5 The dimensionless phase speed of MAG surface waves versus dimensionless horizontal
wavenumber for cs0/cse = 0.9, vA/cse = 1.0 and (a) ue/cse = 0.0, (b) ue/cse = 0.2, (c) ue/cse = 0.8,
(d) ue/cse = 1.12. The permitted regions of propagation for surface waves are shaded grey. The effect of
increasing flow on the fast and slow magnetoacoustic-gravity modes can be seen. Note that as the permitted
regions shift upwards, the backward-propagating fast mode vanishes (see panel (b)). The forward-propagat-
ing fast mode, while slowly shifting upwards together with the asymptote to which it tends, originates at
increasingly higher wavenumbers (panels (c), (d)). The forward-propagating slow mode, while keeping its
relatively constant position, is transferred to the permitted region containing the other slow mode (panel (c)).
The backward-propagating slow mode continues to shift upwards (panel (b)), thus changes its direction of
propagation (panel (c)) and gradually approaches the upper slow mode. Just before the asymptotes to which
the slow modes tend reach each other, the slow modes couple and form two branches like in Figures 4d, e
(this is not visible here). After the connection and cancellation of the asymptotes, only the lower branch of
the coupled modes remains (panel (d)), which gradually disappears as the flow increases.

In what follows, the slow mode with lower phase speed continuously approaches the up-
per slow mode as the flow increases, and finally, when the flow reaches a critical value, it
couples to the upper mode. The coupled slow modes form two branches, and the gap be-
tween them continues to expand with further growing equilibrium flows (Figures 4d and e).
Meanwhile, the two asymptotes to which the slow modes tend become closer until they
merge with each other and cancel out, leaving behind only the lower branch of the coupled
modes (Figure 4f). A further increase of the flow gradually causes this mode to disappear.

Figure 5 shows solutions of the dispersion relation (26) still taking cs0/cse = 0.9, but with
vA/cse = 1.0 for four increasing values of the flow, ue/cse starting from zero (Figures 5a – d).
These parameters again describe a plasma that is slightly hotter at the upper part of the
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surface, similar to the case in Figure 4. However, the difference here is that the plasma-beta
value is approximately 0.98 and the density ratio between the layers is 0.61. This situation is
applicable to the region of the upper chromosphere. In case of these parameters, both the fast
and slow MAG surface modes can propagate, as is visible in Figure 5a (which corresponds
to the static case), both lying entirely within the light grey region (AB < 0) where the modes
have declining vertical velocities in the upper medium (z > 0).

The upward shift of the permitted regions and of the modes (as a result of the increasing
flow) results in the disappearance of the backward-propagating fast mode (Figure 5b). The
upper permitted region containing the forward-propagating fast mode is deformed as a result
of the upward shift of the curve R2. This causes the lower part of the mode to be transferred
to a region (shaded dark grey) where the mode has a growing vertical velocity with height z

(Figure 5b). Next, at higher flow values, the mode, while slowly shifting upward together
with the asymptote to which it tends, can only propagate at increasing wavenumbers (as
shown by their absence in the range 0 ≤ kxHe ≤ 6 in Figures 5c and d).

The forward- and backward-propagating slow modes behave similarly to the case de-
picted in Figure 4. The forward propagating slow mode, whilst keeping its relatively constant
position, is transferred to the permitted region containing the other slow mode (Figure 5c).
Meanwhile, the backward-propagating slow mode carried away by the flow continues to
shift upwards, and thus changes its direction of propagation (Figure 5c) and approaches the
upper slow mode. Just before the asymptotes – to which the slow modes tend – reach each
other, the slow modes couple and form two branches like in Figures 4d and e (this is not vis-
ible here). After the connection and cancellation of the asymptotes, only the lower branch of
the coupled modes remains (Figure 5d), which gradually disappears as the flow increases.

Finally, in Figure 6 we show solutions of the dispersion relation (26) taking cs0/cse = 1.4
and vA/cse = 0.75. These parameters may model a situation where the upper plasma is hotter
than the lower plasma. The plasma-beta value is approximately 4.18 and the density ratio is
0.41. We use these parameters for a direct comparison to the model used in Miles, Allen, and
Roberts (1992). For these parameters only the slow MA mode may propagate in the limit of
no gravity (kxHe → ∞). Thus, in Figure 6a (the static case), the slow MAG mode is visible.
The mode is split into two parts. The upper curve (in the dark grey region) has a growing
vertical velocity, while the lower part (in the light grey region) has a velocity decreasing in
the z > 0 region.

As the equilibrium flow increases, the modes in the dark grey regions behave differently:
the backward-propagating mode disappears, while its forward-propagating counterpart slips
out from the dark grey region into the light grey region (Figure 6b) and later (at higher flow
velocities) is transferred to the permitted region bounded by the cut-off curves R4 and R5

(Figures 6c and d). The slow modes behave similarly to the previous cases: the backward-
propagating slow mode shifts together with the flow (Figure 6b), changes its direction of
propagation (Figure 6c), and finally reaches and couples to the forward propagating slow
mode (Figure 6d). The coupled modes gradually disappear as the flow increases further.

It is of interest to deduce how the phase speed of a mode varies with the increasing flow
magnitude at a specific wavenumber.

In Figure 7 we show the variation of the dimensionless phase speed, ω/kxcse, of surface
MAG waves as a function of the dimensionless flow velocity, ue/cse. The parameters were
set to cs0/cse = 0.9, vA/cse = 1.0, and we chose three different values for the dimensionless
wavenumber: (a) kxHe = 1.0, where the horizontal wavelength and the scale on which the
(lower) equilibrium changes are comparable, (b) kxHe = 5.0, where the equilibrium varies
on a scale lower than the wavelength and (c) kxHe = ∞, where the length of a wave is far
smaller than the change in equilibrium conditions, i.e. stratification is unimportant. From the
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Figure 6 The dimensionless phase speed of surface MAG waves as a function of the dimensionless horizon-
tal wavenumber for cs0/cse = 1.4, vA/cse = 0.75 and (a) ue/cse = 0.0, (b) ue/cse = 0.5, (c) ue/cse = 0.83,
(d) ue/cse = 0.9. The permitted regions of propagation for surface waves are shaded grey. The effect of in-
creasing flow on the slow magnetoacoustic-gravity mode can be seen. As the flow increases, the modes in the
dark grey regions behave differently: the backward-propagating mode disappears, while its forward-propagat-
ing counterpart slips out from the dark grey region into the light grey region (see panel (b)) and later (at higher
flow velocities) is transferred to the permitted region bounded by the cut-off curves R4 and R5 (panels (c)
and (d)). The forward-propagating slow mode, while keeping its relatively constant position, is transferred
to the permitted region containing the other slow mode (panel (c)). The backward-propagating slow mode
continues to shift upwards (panel (b)), changes its direction of propagation (panel (c)), and approaches the
upper slow mode. Finally, the asymptotes to which the modes tend reach each other and cancel out, and the
modes couple to each other (panel (d)). The coupled modes gradually disappear as the flow increases.

choice of parameters the modes shown here are the same fast and slow MAG surface modes
as those displayed in Figure 5. The permitted regions of propagation for surface waves
are shaded grey. The kxHe = ∞ case is equivalent to the gravity-free case, and therefore
Figure 7c shows the behaviour of the fast and slow MAG surface modes that correspond to
the asymptotes of the modes in Figure 5.

It is visible in all three figures that as the flow starts to increase from zero, the phase
speeds of all modes increase. The backward-propagating fast mode vanishes in all three
cases. A forbidden gap arises, where surface modes are not allowed to propagate, bounded
by the R1 and R4 cut-off curves. This causes the forward-propagating fast and slow modes
to exist in two separate flow intervals below and above the gap (Figures 7a, b). However,
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Figure 7 The variation of the dimensionless phase speed of surface MAG waves as a function of the dimen-
sionless flow velocity at a given wavenumber for cs0/cse = 0.9, vA/cse = 1.0. Cases are: (a) kxHe = 1.0,
(b) kxHe = 5.0, and (c) kxHe = ∞. The permitted regions of propagation for surface waves are shaded grey.
The effect of increasing the overall magnitude of the flow on the fast and slow magnetoacoustic-gravity modes
can be seen. The modes shown here are the same fast and slow MAG surface modes as those displayed in
Figure 5. The backward-propagating fast mode vanishes in all three cases. For a positive flow, between the
R1 and R4 cut-off curves, there exists a non-permitted gap that causes in a break in the permitted flow veloc-
ity range for propagation at the forward-propagating fast and slow modes (see panels (a), (b)). The width of
the gap decreases with increasing wavenumber and finally disappears in the kxHe = ∞ limit (see panel (c)).
Exactly the same occurs for ‘negative’ flows. The dispersion graph is rotated through 180◦ , and in this case,
the backward-propagating slow and fast waves have a forbidden gap between the cut-off curves R4 and R1.
As the positive flow increases, the phase speeds of forward-propagating fast and slow modes change little,
by contrast the backward propagating slow mode is carried away by the flow and even changes its direction
of propagation. The opposite is seen if the flow is decreased negatively, showing the symmetry of the prob-
lem. At a given flow velocity (positive and negative), the two slow modes couple, i.e. the Kelvin–Helmholtz
instability occurs, and no asymptotic solutions exist any more.

with increasing wavenumber, the width of the gap decreases, eventually disappearing in the
kxHe → ∞ limit (Figure 7c). See Equations (54) – (56) for the asymptotic values of the
cut-off curves R1, R2, R3, R4, R5, and R6.

The phase speeds of the forward-propagating fast and slow modes clearly change little
with flow speed. For lower flow velocities they increase, and for higher flow velocities they
decrease with growing flow. On the other hand, the phase speed of the backward-propagating
slow mode changes substantially with flow speed, being carried away by the flow (see the
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parts in Figure 7 where the phase speed increases together with the flow with unit slope). It
is also easily observable that the backward-propagating slow mode changes the direction of
propagation and couples to the other slow mode.

For flows in the negative direction, the opposite behaviour occurs. The forward-
propagating slow modes are decelerated by this counter-flow and even reverse their direc-
tion of propagation. The backward-propagating fast and slow mode phase speeds are barely
changed by the increase in the magnitude of the negative flow. This is due to the property of
the dispersion relation (26) that it is symmetric for the Doppler shifted frequency (�) in the
lower layer part.

4. Conclusion

We study MAG surface wave propagation with the consideration of a steady uniform flow
(in the horizontal x-direction) in the bottom layer of two semi-infinite plasmas under gravity
described by the fully static equilibrium given in Miles and Roberts (1992). The equilibrium
leads to a velocity shear, with the bottom layer in relative motion to the fixed frame of
reference of the upper magnetic layer. It is found that this consideration of flow has important
consequences on the propagation of MAG surface waves.

With respect to the propagation of surface waves, the flow is shown to have an effect in
some distinct ways. By increasing the flow parameter ue/cse from zero upwards, the cut-
offs for determining regions of surface wave propagation in the ω/kx–kx plane are shifted.
The disappearance of the fast wave can be accounted for by this shift, in some cases (see,
e.g. Figure 4a). Another aspect of the consideration of bulk background flow is the change
in the phase speeds of the surface waves. Figures 4–6 show that the backward-propagating
solution is decelerated as the flow is increased. At a wavelength threshold, it can eventually
become a forward-propagating wave in the static frame of reference. We clearly observe
this behaviour in Figure 7. Here the flow is increased, with the wavenumber remaining con-
stant, and the solutions clearly cross the axis to become forward propagating. The change
in direction of propagation of the surface waves has been shown to lead to the occurrence
of negative-energy waves, which may be of interest in energy transfer between waves of
positive and negative energy (Ryutova 1988), resonant absorption (Ruderman and Wright
1998, Tirry et al., 1998, Erdélyi and Taroyan, 2003), or explosive instabilities (Joarder,
Nakariakov, and Roberts, 1997). As the flow velocity shear between the two layers is in-
creased, eventually a point is reached where the Kelvin–Helmholtz instability appears (see
e.g. Chandrasekhar 1961); the two wave solutions couple together. This is demonstrated in
Figures 4–7, where the solutions approach one another as the flow increases, becoming com-
plex conjugates, respectively. This means that both have the same real phase speed, but one
wave has a positive imaginary part and is therefore over-stable with increasing amplitude
in time, whilst the other wave has a negative imaginary part and is therefore damped over
time.

Meridional flows of the interior of the Sun are very slow, up to 0.2 km s−1. We take this
value as ue and the sound speed as 7 km s−1 such that ue/cse = 0.03 for the model proposed
for Figure 4. It is clear from this value that this type of velocity shear will only have a
modest effect on the propagation of MAG surface waves in the proposed model. However,
this type of velocity shear is not the only possible shear for the model described in Figure 4.
Velocity shears between the two layers could also be attributed to differential rotation of
the Sun. If we take a high differential rotation velocity of 2.0 km s−1 i.e. ue/cse = 0.29,
then the ratio is higher, but as shown in Figure 4, the flow speed is not high enough for
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backward-propagating waves to reverse their direction. Therefore no negative energy waves
or Kelvin–Helmholtz instability will occur.

Evershed flows in sunspots can reach up to 6 km s−1. Applying this to Figure 5 and taking
cse = 7 km s−1 and ue = 6 km s−1 and thus ue/cse = 0.86, it can be seen from Figures 5
and 7 that this flow speed is high enough for the backward-propagating waves to reverse
their direction of propagation. Thus some running penumbral waves (RPW) may become
negative energy waves. This could also have implications for interpreting the observations
of RPW, as some may have very slow phase speeds because they are backward-propagating
waves.
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