218 research outputs found
Human helminth therapy to treat inflammatory disorders - where do we stand?
Parasitic helminths have evolved together with the mammalian immune system over many millennia and as such they have become remarkably efficient modulators in order to promote their own survival. Their ability to alter and/or suppress immune responses could be beneficial to the host by helping control excessive inflammatory responses and animal models and pre-clinical trials have all suggested a beneficial effect of helminth infections on inflammatory bowel conditions, MS, asthma and atopy. Thus, helminth therapy has been suggested as a possible treatment method for autoimmune and other inflammatory disorders in humans
VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-κB signaling pathway
BACKGROUND: Hypoxia-induced mitogenic factor (HIMF) is developmentally regulated and plays an important role in lung pathogenesis. We initially found that HIMF promotes vascular tubule formation in a matrigel plug model. In this study, we investigated the mechanisms which HIMF enhances expression of vascular endothelial growth factor (VEGF) in lung tissues and epithelial cells. METHODS: Recombinant HIMF protein was intratracheally instilled into adult mouse lungs, VEGF expression was examined by immunohistochemical staining and Western blot. The promoter-luciferase reporter assay, RT-PCR, and Western blot were performed to examine the effects of HIMF on VEGF expression in mouse lung epithelial cell line MLE-12. The activation of NF-kappa B (NF-κB) and phosphorylation of Akt, IKK and IκBα were examined by luciferase assay and Western blot, respectively. RESULTS: Intratracheal instillation of HIMF protein resulted in significant increase of VEGF, mainly localized to airway epithelial and alveolar type II cells. Deletion of NF-κB binding sites within VEGF promoter abolished HIMF-induced VEGF expression in MLE-12 cells, suggesting that activation of NF-κB is essential for VEGF upregulation induced by HIMF. Stimulation of lung epithelial cells by HIMF resulted in phosphorylation of IKK and IκBα, leading to activation of NF-κB. In addition, HIMF strongly induced Akt phosphorylation, and suppression of Akt activation by specific inhibitors and dominant negative mutants for PI-3K, and IKK or IκBα blocked HIMF-induced NF-κB activation and attenuated HIMF-induced VEGF production. CONCLUSION: These results suggest that HIMF enhances VEGF production in mouse lung epithelial cells in a PI-3K/Akt-NF-κB signaling pathway-dependent manner, and may play critical roles in pulmonary angiogenesis
Recommended from our members
Association of Genetic Variants With Primary Open-Angle Glaucoma Among Individuals With African Ancestry.
Importance:Primary open-angle glaucoma presents with increased prevalence and a higher degree of clinical severity in populations of African ancestry compared with European or Asian ancestry. Despite this, individuals of African ancestry remain understudied in genomic research for blinding disorders. Objectives:To perform a genome-wide association study (GWAS) of African ancestry populations and evaluate potential mechanisms of pathogenesis for loci associated with primary open-angle glaucoma. Design, Settings, and Participants:A 2-stage GWAS with a discovery data set of 2320 individuals with primary open-angle glaucoma and 2121 control individuals without primary open-angle glaucoma. The validation stage included an additional 6937 affected individuals and 14 917 unaffected individuals using multicenter clinic- and population-based participant recruitment approaches. Study participants were recruited from Ghana, Nigeria, South Africa, the United States, Tanzania, Britain, Cameroon, Saudi Arabia, Brazil, the Democratic Republic of the Congo, Morocco, Peru, and Mali from 2003 to 2018. Individuals with primary open-angle glaucoma had open iridocorneal angles and displayed glaucomatous optic neuropathy with visual field defects. Elevated intraocular pressure was not included in the case definition. Control individuals had no elevated intraocular pressure and no signs of glaucoma. Exposures:Genetic variants associated with primary open-angle glaucoma. Main Outcomes and Measures:Presence of primary open-angle glaucoma. Genome-wide significance was defined as P < 5 × 10-8 in the discovery stage and in the meta-analysis of combined discovery and validation data. Results:A total of 2320 individuals with primary open-angle glaucoma (mean [interquartile range] age, 64.6 [56-74] years; 1055 [45.5%] women) and 2121 individuals without primary open-angle glaucoma (mean [interquartile range] age, 63.4 [55-71] years; 1025 [48.3%] women) were included in the discovery GWAS. The GWAS discovery meta-analysis demonstrated association of variants at amyloid-β A4 precursor protein-binding family B member 2 (APBB2; chromosome 4, rs59892895T>C) with primary open-angle glaucoma (odds ratio [OR], 1.32 [95% CI, 1.20-1.46]; P = 2 × 10-8). The association was validated in an analysis of an additional 6937 affected individuals and 14 917 unaffected individuals (OR, 1.15 [95% CI, 1.09-1.21]; P < .001). Each copy of the rs59892895*C risk allele was associated with increased risk of primary open-angle glaucoma when all data were included in a meta-analysis (OR, 1.19 [95% CI, 1.14-1.25]; P = 4 × 10-13). The rs59892895*C risk allele was present at appreciable frequency only in African ancestry populations. In contrast, the rs59892895*C risk allele had a frequency of less than 0.1% in individuals of European or Asian ancestry. Conclusions and Relevance:In this genome-wide association study, variants at the APBB2 locus demonstrated differential association with primary open-angle glaucoma by ancestry. If validated in additional populations this finding may have implications for risk assessment and therapeutic strategies
In Vivo Isolation and Characterization of Stem Cells with Diverse Phenotypes Using Growth Factor Impregnated Biomatrices
BACKGROUND: The stimulation to differentiate into specific cell types for somatic stem cells is largely due to a series of internal and external signals coming from the microenvironment that surrounds the stem cell. Even though intensive research has been made, the basic mechanisms of plasticity and/or the molecules regulating stem cells proliferation and differentiation are not completely determined. Potential answers concerning the problems could be derived from the studies of stem cells in culture. METHODOLOGY/PRINCIPLE FINDINGS: We combine a new procedure (using the matrigel biopolymer supplemented with a selected cytokine/growth factor) with classic techniques such as light, confocal and electron microscopy, immunohistochemistry and cell culture, to perform an analysis on stem cells involved in the leech (Hirudo medicinalis) repair tissues. The leech has a relative anatomical simplicity and is a reliable model for studying a variety of basic events, such as tissue repair, which has a striking similarity with vertebrate responses. Our data demonstrate that the injection of an appropriate combination of the matrigel biopolymer supplemented with a selected cytokine/growth factor in the leech Hirudo medicinalis is a remarkably effective tool for isolating a specific cell population in vivo. A comparative analysis of biopolymer in vivo sorted stem cells indicates that VEGF recruited cells of a hematopoietic/endothelial phenotype whereas MCP-1/CCL2 isolated cells that were of an early myeloid lineage. CONCLUSION: Our paper describes, for the first time, a method allowing not only the isolation of a specific cell population in relation to the cytokine utilized but also the possibility to culture a precise cell type whose isolation is otherwise quite difficult. This approach could be broadly applied to isolate stem cells of diverse origins based on the recruitment stimuli employed
Oxygen Tension Regulates Pancreatic β-Cell Differentiation Through Hypoxia-Inducible Factor 1α
International audienceThese data demonstrate that beta-cell differentiation is controlled by pO2 through HIF1alpha. Modifying pO2 should now be tested in protocols aiming to differentiate beta-cells from embryonic stem cells
The Noise Exposure Structured Interview (NESI): an instrument for the comprehensive estimation of lifetime noise exposure
Lifetime noise exposure is generally quantified by self report. The accuracy of retrospective self report is limited by respondent recall, but is also bound to be influenced by reporting procedures. Such procedures are of variable quality in current measures of lifetime noise exposure, and off-the-shelf instruments are not readily available. The Noise Exposure Structured Interview (NESI) represents an attempt to draw together some of the stronger elements of existing procedures and to provide solutions to their outstanding limitations. Reporting is not restricted to pre-specified exposure activities, and instead encompasses all activities that the respondent has experienced as noisy (defined based on sound level estimated from vocal effort). Changing exposure habits over time are reported by dividing the lifespan into discrete periods in which exposure habits were approximately stable, with life milestones used to aid recall. Exposure duration, sound level, and use of hearing protection are reported for each life period separately. Simple-to-follow methods are provided for the estimation of free-field sound level, the sound level emitted by personal listening devices, and the attenuation provided by hearing protective equipment. An energy-based means of combining the resulting data is supplied, along with a primarily energy-based method for incorporating firearm-noise exposure. Finally, the NESI acknowledges the need of some users to tailor the procedures; this flexibility is afforded and reasonable modifications are described. Competency needs of new users are addressed through detailed interview instructions (including troubleshooting tips) and a demonstration video. Limited evaluation data are available and future efforts at evaluation are proposed
Retinoic Acid Mediates Regulation of Network Formation by COUP-TFII and VE-Cadherin Expression by TGFβ Receptor Kinase in Breast Cancer Cells
Tumor development, growth, and metastasis depend on the provision of an adequate vascular supply. This can be due to regulated angiogenesis, recruitment of circulating endothelial progenitors, and/or vascular transdifferentiation. Our previous studies showed that retinoic acid (RA) treatment converts a subset of breast cancer cells into cells with significant endothelial genotypic and phenotypic elements including marked induction of VE-cadherin, which was responsible for some but not all morphological changes. The present study demonstrates that of the endothelial-related genes induced by RA treatment, only a few were affected by knockdown of VE-cadherin, ruling it out as a regulator of the RA-induced endothelial genotypic switch. In contrast, knockdown of the RA-induced gene COUP-TFII prevented the formation of networks in Matrigel but had no effect on VE-cadherin induction or cell fusion. Two pan-kinase inhibitors markedly blocked RA-induced VE-cadherin expression and cell fusion. However, RA treatment resulted in a marked and broad reduction in tyrosine kinase activity. Several genes in the TGFβ signaling pathway were induced by RA, and specific inhibition of the TGFβ type I receptor blocked both RA-induced VE-cadherin expression and cell fusion. Together these data indicate a role for the TGFβ pathway and COUP-TFII in mediating the endothelial transdifferentiating properties of RA
Hybrid Shell Engineering of Animal Cells for Immune Protections and Regulation of Drug Delivery: Towards the Design of “Artificial Organs”
BACKGROUND: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. METHODOLOGY/PRINCIPAL FINDINGS: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. CONCLUSIONS/SIGNIFICANCE: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient
Deguelin Attenuates Reperfusion Injury and Improves Outcome after Orthotopic Lung Transplantation in the Rat
The main goal of adequate organ preservation is to avoid further cellular metabolism during the phase of ischemia. However, modern preservation solutions do rarely achieve this target. In donor organs hypoxia and ischemia induce a broad spectrum of pathologic molecular mechanisms favoring primary graft dysfunction (PGD) after transplantation. Increased hypoxia-induced transcriptional activity leads to increased vascular permeability which in turn is the soil of a reperfusion edema and the enhancement of a pro-inflammatory response in the graft after reperfusion. We hypothesize that inhibition of the respiration chain in mitochondria and thus inhibition of the hypoxia induced mechanisms might reduce reperfusion edema and consecutively improve survival in vivo. In this study we demonstrate that the rotenoid Deguelin reduces the expression of hypoxia induced target genes, and especially VEGF-A, dose-dependently in hypoxic human lung derived cells. Furthermore, Deguelin significantly suppresses the mRNA expression of the HIF target genes VEGF-A, the pro-inflammatory CXCR4 and ICAM-1 in ischemic lungs vs. control lungs. After lung transplantation, the VEGF-A induced reperfusion-edema is significantly lower in Deguelin-treated animals than in controls. Deguelin-treated rats exhibit a significantly increased survival-rate after transplantation. Additionally, a downregulation of the pro-inflammatory molecules ICAM-1 and CXCR4 and an increase in the recruitment of immunomodulatory monocytes (CD163+ and CD68+) to the transplanted organ involving the IL4 pathway was observed. Therefore, we conclude that ischemic periods preceding reperfusion are mainly responsible for the increased vascular permeability via upregulation of VEGF. Together with this, the resulting endothelial dysfunction also enhances inflammation and consequently lung dysfunction. Deguelin significantly decreases a VEGF-A induced reperfusion edema, induces the recruitment of immunomodulatory monocytes and thus improves organ function and survival after lung transplantation by interfering with hypoxia induced signaling
- …