962 research outputs found

    Experimental study of vapor-cell magneto-optical traps for efficient trapping of radioactive atoms

    Full text link
    We have studied magneto-optical traps (MOTs) for efficient on-line trapping of radioactive atoms. After discussing a model of the trapping process in a vapor cell and its efficiency, we present the results of detailed experimental studies on Rb MOTs. Three spherical cells of different sizes were used. These cells can be easily replaced, while keeping the rest of the apparatus unchanged: atomic sources, vacuum conditions, magnetic field gradients, sizes and power of the laser beams, detection system. By direct comparison, we find that the trapping efficiency only weakly depends on the MOT cell size. It is also found that the trapping efficiency of the MOT with the smallest cell, whose diameter is equal to the diameter of the trapping beams, is about 40% smaller than the efficiency of larger cells. Furthermore, we also demonstrate the importance of two factors: a long coated tube at the entrance of the MOT cell, used instead of a diaphragm; and the passivation with an alkali vapor of the coating on the cell walls, in order to minimize the losses of trappable atoms. These results guided us in the construction of an efficient large-diameter cell, which has been successfully employed for on-line trapping of Fr isotopes at INFN's national laboratories in Legnaro, Italy.Comment: 9 pages, 7 figures, submitted to Eur. Phys. J.

    Glutathione-loaded solid lipid microparticles as innovative delivery system for oral antioxidant therapy

    Get PDF
    The present study aimed to develop a novel formulation containing glutathione (GSH) as an oral antioxidant therapy for the treatment of oxidative stress-related intestinal diseases. To this purpose, solid lipid microparticles (SLMs) with Dynasan 114 and a mixture of Dynasan 114 and Dynasan 118 were produced by spray congealing technology. The obtained SLMs had main particle sizes ranging from 250 to 355 µm, suitable for oral administration. GSH was efficiently loaded into the SLMs at 5% or 20% w/w and the encapsulation process did not modify its chemico-physical properties, as demonstrated by FT-IR, DSC and HSM analysis. Moreover, in vitro release studies using biorelevant media showed that Dynasan 114-based SLMs could efficiently release GSH in various intestinal fluids, while 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay demonstrated the good radical scavenging activity of this formulation. Dynasan 114-based SLMs exhibited an excellent biocompatibility on intestinal HT-29 cells at concentrations up to 2000 µg/mL. SLMs containing GSH alone or together with another antioxidant agent (catalase) were effective in reducing intracellular reactive oxygen species (ROS) levels. Overall, this study indicated that spray congealed SLMs are a promising oral drug delivery system for the encapsulation of one or more biological antioxidant agents for local intestinal treatment

    Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol

    Get PDF
    For oceans to be a significant source of primary organic aerosol (POA), sea spray aerosol (SSA) must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OM<sub>SSA</sub>). To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-<i>a</i>, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-<i>a</i> concentration ([Chl-<i>a</i>]) are the most consistent predictors of OM<sub>SSA</sub>. This relationship, combined with the published aerosol size dependence of OM<sub>SSA</sub>, resulted in a new parameterization for the organic mass fraction of SSA. Global emissions of marine POA are investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-<i>a</i>], and modeled 10 m winds. Analysis of model simulations shows that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr<sup>−1</sup>. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere

    Size-segregated aerosol chemical composition at a boreal site in southern Finland, during the QUEST project

    No full text
    International audienceSize-segregated aerosol samples were collected during the QUEST field campaign at Hyytiälä, a boreal forest site in Southern Finland, during spring 2003. Aerosol samples were selectively collected during both particle formation events and periods in which no particle formation occurred. A comprehensive characterisation of the aerosol chemical properties (water-soluble inorganic and organic fraction) and an analysis of the relevant meteorological parameters revealed how aerosol chemistry and meteorology combine to determine a favorable "environment" for new particle formation. The results indicated that all events, typically favored during northerly air mass advection, were background aerosols (total mass concentrations range between 1.97 and 4.31 µg m-3), with an increasingly pronounced marine character as the northerly air flow arrived progressively from the west and, in contrast, with a moderate SO2-pollution influence as the air arrived from more easterly directions. Conversely, the non-event aerosol, transported from the south, exhibited the chemical features of European continental sites, with a marked increase in the concentrations of all major anthropogenic aerosol constituents. The higher non-event mass concentration (total mass concentrations range between 6.88 and 16.30 µg m-3) and, thus, a larger surface area, tended to suppress new particle formation, more efficiently depleting potential gaseous precursors for nucleation. The analysis of water-soluble organic compounds showed that clean nucleation episodes were dominated by aliphatic biogenic species, while non-events were characterised by a large abundance of anthropogenic oxygenated species. Interestingly, a significant content of ?-pinene photo-oxidation products was observed in the events aerosol, accounting for, on average, 72% of their WSOC; while only moderate amounts of these species were found in the non-event aerosol. If the organic vapors condensing onto accumulation mode particles are responsible also for the growth of newly formed thermodynamically stable clusters, our finding allows one to postulate that, at the site, ?-pinene photo-oxidation products (and probably also photo-oxidation products from other terpenes) are the most likely species to contribute to the growth of nanometer-sized particles

    An open data index to assess the green transition - A study on all Italian municipalities

    Get PDF
    This study introduces a municipality transition index based on open data and green transition principles. The Municipality Transition Index provides data and a succinct measurement of municipal attributes as defined by green policies at national and local level. We identify four dimensions of interest and 18 key performance indicators, defined at municipality level, and measure factors that directly and indirectly influence the green transition, with a focus on the Green Deal vision embraced by the European Union. The robustness and meaningfulness of the index is tested on a dataset covering all 7904 Italian municipalities. Our results show that computation of the MTI on this sample produces a bell-shaped distribution, suggesting strong geographic disparities and a significant difference between cities, towns and rural areas. The results show the need for policies and tools tailored at municipal level and provide information for practitioners, policy makers and experts from academia, useful for designing tools to underpin investment planning in the framework of the recent National Recovery and Resilience Plan issued by the Italian government. This may be particularly useful for enhancing green-transition-enabling factors that may differ across regions, helping policymakers to promote a smooth and fair transition by monitoring the performance of municipalities as they address the challenge

    Controversies in Surgical Staging of Endometrial Cancer

    Get PDF
    Endometrial cancer is the most common gynaecological malignancy and its incidence is increasing. In 1998, international federation of gynaecologists and obstetricians (FIGO) required a change from clinical to surgical staging in endometrial cancer, introducing pelvic and paraaortic lymphadenectomy. This staging requirement raised controversies around the importance of determining nodal status and impact of lymphadenectomy on outcomes. There is agreement about the prognostic value of lymphadenectomy, but its extent, therapeutic value, and benefits in terms of survival are still matter of debate, especially in early stages. Accurate preoperative risk stratification can guide to the appropriate type of surgery by selecting patients who benefit of lymphadenectomy. However, available preoperative and intraoperative investigations are not highly accurate methods to detect lymph nodes and a complete surgical staging remains the most precise method to evaluate extrauterine spread of the disease. Laparotomy has always been considered the standard approach for endometrial cancer surgical staging. Traditional and robotic-assisted laparoscopic techniques seem to provide equivalent results in terms of disease-free survival and overall survival compared to laparotomy. These minimally invasive approaches demonstrated additional benefits as shorter hospital stay, less use of pain killers, lower rate of complications and improved quality of life

    <i>Herschel</i> observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud

    Get PDF
    We report far-infrared Herschel observations obtained between 70 μm and 500 μm of two star-forming dusty condensations, [HKM99] B1-bS and [HKM99] B1-bN, in the B1 region of the Perseus star-forming cloud. In the western part of the Perseus cloud, B1-bS is the only source detected in all six PACS and SPIRE photometric bands, but it is not visible in the Spitzer map at 24 μm. B1-bN is clearly detected between 100 μm and 250 μm. We have fitted the spectral energy distributions of these sources to derive their physical properties, and find that a simple greybody model fails to reproduce the observed spectral energy distributions. At least a two-component model is required, consisting of a central source surrounded by a dusty envelope. The properties derived from the fit, however, suggest that the central source is not a Class 0 object. We then conclude that while B1-bS and B1-bN appear to be more evolved than a pre-stellar core, the best-fit models suggest that their central objects are younger than a Class 0 source. Hence, they may be good candidates to be examples of the first hydrostatic core phase. The projected distance between B1-bS and B1-bN is a few Jeans lengths. If their physical separation is close to this value, this pair would allow studying the mutual interactions between two forming stars at a very early stage of their evolution

    Green and Roasted Coffee Extracts Inhibit Interferon-β Release in LPS-Stimulated Human Macrophages

    Get PDF
    The anti-inflammatory activity of coffee extracts is widely recognized and supported by experimental evidence, in both in vitro and in vivo settings, mainly murine models. Here, we investigated the immunomodulatory properties of coffee extracts from green (GCE) and medium-roasted (RCE) Coffea canephora beans in human macrophages. The biological effect of GCE and RCE was characterized in LPS-stimulated THP-1-derived human macrophages (TDM) as a model of inflammation. Results showed decreased amounts of TNF-α, IL-6 and IL-1β and a strong dose-dependent inhibition of interferon-β (IFN-β) release. Molecular mechanism of IFN-β inhibition was further investigated by immunofluorescence confocal microscopy analysis that showed a diminished nuclear translocation of p-IRF-3, the main transcription factor responsible for IFN-β synthesis. The inhibition of IFN-β release by RCE and GCE was also confirmed in human primary CD14+ monocytes-derived macrophages (MDM). The main component of coffee extracts, 5-O-caffeoylquinic acid (5-CQA) also inhibited IFN-β production, through a mechanism occurring downstream to TLR4. Inhibition of IFN-β release by coffee extracts parallels with the activity of their main phytochemical component, 5-CQA, thus suggesting that this compound is the main responsible for the immunomodulatory effect observed. The application of 5-CQA and coffee derived-phytoextracts to target interferonopathies and inflammation-related diseases could open new pharmacological and nutritional perspectives

    Evidence for a massive dust-trapping vortex connected to spirals: Multi-wavelength analysis of the HD 135344B protoplanetary disk

    Get PDF
    Spiral arms, rings and large scale asymmetries are structures observed in high resolution observations of protoplanetary disks, and it appears that some of the disks showing spiral arms in scattered light also show asymmetries in millimeter-sized dust. HD~135344B is one of these disks. Planets are invoked as the origin of these structures, but no planet has been observed so far. We investigate the nature of the asymmetric structure in the HD~135344B disk in order to understand the origin of the spirals and of the asymmetry seen in this disk. Ultimately, we aim at understanding whether or not one or more planets are needed to explain such structures. We present new ALMA sub-0.1" resolution observations in Band 3 and 4. The high spatial resolution allows us to characterize the mm-dust morphology of the disk. The low optical depth of continuum emission probes the bulk of the dust in vortex. Moreover, we combine the new observations with archival data to perform a multi-wavelength analysis and to obtain information about the dust distribution and properties inside the asymmetry. We resolve the asymmetric disk into a symmetric ring + asymmetric crescent, and observe that: (1) the spectral index strongly decreases at the center of the vortex, consistent with the presence of large grains; (2) for the first time, an azimuthal shift of the peak of the vortex with wavelength is observed; (3) the azimuthal width of the vortex decreases at longer wavelengths, as expected for dust traps. These features allow to confirm the nature of the asymmetry as a vortex. Finally a lower limit to the total mass of the vortex is 0.3MJupiter0.3 M_{\rm Jupiter}. Considering the uncertainties involved in this estimate, it is possible that the actual mass of the vortex is higher and possibly within the required values (4MJupiter\sim 4\,\rm M_{\rm Jupiter}) to launch spiral arms similar to those observed in scattered light.P.P. acknowledges support by NASA through Hubble Fellowship grant HST-HF2-51380.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. M.B. acknowledges funding from ANR of France under contract number ANR-16-CE31-0013 (Planet Forming disks). M.T. has been supported by the DISCSIM project, grant agreement 341137 funded by the European Research Council under ERC-2013-ADG. Astrochemistry in Leiden is supported by the European Union A-ERC grant 291141 CHEMPLAN, by the Netherlands Research School for Astronomy (NOVA), and by a Royal Netherlands Academy of Arts and Sciences (KNAW) professor prize

    A giant planet shaping the disk around the very low-mass star CIDA 1

    Get PDF
    Context. Exoplanetary research has provided us with exciting discoveries of planets around very low-mass (VLM) stars (0.08 M⊙ ≲ M* ≲ 0.3 M⊙; e.g., TRAPPIST-1 and Proxima Centauri). However, current theoretical models still strive to explain planet formation in these conditions and do not predict the development of giant planets. Recent high-resolution observations from the Atacama Large Millimeter/submillimeter Array (ALMA) of the disk around CIDA 1, a VLM star in Taurus, show substructures that hint at the presence of a massive planet. Aims. We aim to reproduce the dust ring of CIDA 1, observed in the dust continuum emission in ALMA Band 7 (0.9 mm) and Band 4 (2.1 mm), along with its 12CO (J = 3−2) and 13CO (J = 3−2) channel maps, assuming the structures are shaped by the interaction of the disk with a massive planet. We seek to retrieve the mass and position of the putative planet, through a global simulation that assesses planet-disk interactions to quantitatively reproduce protoplanetary disk observations of both dust and gas emission in a self-consistent way. Methods. Using a set of hydrodynamical simulations, we model a protoplanetary disk that hosts an embedded planet with a starting mass of between 0.1 and 4.0 MJup and initially located at a distance of between 9 and 11 au from the central star. We compute the dust and gas emission using radiative transfer simulations, and, finally, we obtain the synthetic observations, treating the images as the actual ALMA observations. Results. Our models indicate that a planet with a minimum mass of ~1.4 MJup orbiting at a distance of ~9−10 au can explain the morphology and location of the observed dust ring in Band 7 and Band 4. We match the flux of the dust emission observation with a dust-to-gas mass ratio in the disk of ~10−2. We are able to reproduce the low spectral index (~2) observed where the dust ring is detected, with a ~40−50% fraction of optically thick emission. Assuming a 12CO abundance of 5 × 10−5 and a 13CO abundance 70 times lower, our synthetic images reproduce the morphology of the 12CO (J = 3−2) and 13CO (J = 3−2) observed channel maps where the cloud absorption allowed a detection. From our simulations, we estimate that a stellar mass M* = 0.2 M⊙ and a systemic velocity vsys = 6.25 km s−1 are needed to reproduce the gas rotation as retrieved from molecular line observations. Applying an empirical relation between planet mass and gap width in the dust, we predict a maximum planet mass of ~4−8 MJup. Conclusions. Our results suggest the presence of a massive planet orbiting CIDA 1, thus challenging our understanding of planet formation around VLM stars
    corecore