22,673 research outputs found

    Collective rearrangement at the onset of flow of a polycrystalline hexagonal columnar phase

    Full text link
    Creep experiments on polycrystalline surfactant hexagonal columnar phases show a power law regime, followed by a drastic fluidization before reaching a final stationary flow. The scaling of the fluidization time with the shear modulus of the sample and stress applied suggests that the onset of flow involves a bulk reorganization of the material. This is confirmed by X-ray scattering under stress coupled to \textit{in situ} rheology experiments, which show a collective reorientation of all crystallites at the onset of flow. The analogy with the fracture of heterogeneous materials is discussed.Comment: to appear in Phys. Rev. Let

    Brain-machine interfaces for rehabilitation in stroke: A review

    Get PDF
    BACKGROUND: Motor paralysis after stroke has devastating consequences for the patients, families and caregivers. Although therapies have improved in the recent years, traditional rehabilitation still fails in patients with severe paralysis. Brain-machine interfaces (BMI) have emerged as a promising tool to guide motor rehabilitation interventions as they can be applied to patients with no residual movement. OBJECTIVE: This paper reviews the efficiency of BMI technologies to facilitate neuroplasticity and motor recovery after stroke. METHODS: We provide an overview of the existing rehabilitation therapies for stroke, the rationale behind the use of BMIs for motor rehabilitation, the current state of the art and the results achieved so far with BMI-based interventions, as well as the future perspectives of neural-machine interfaces. RESULTS: Since the first pilot study by Buch and colleagues in 2008, several controlled clinical studies have been conducted, demonstrating the efficacy of BMIs to facilitate functional recovery in completely paralyzed stroke patients with noninvasive technologies such as the electroencephalogram (EEG). CONCLUSIONS: Despite encouraging results, motor rehabilitation based on BMIs is still in a preliminary stage, and further improvements are required to boost its efficacy. Invasive and hybrid approaches are promising and might set the stage for the next generation of stroke rehabilitation therapies.This study was funded by the Bundesministerium für Bildung und Forschung BMBF MOTORBIC (FKZ13GW0053)andAMORSA(FKZ16SV7754), the Deutsche Forschungsgemeinschaft (DFG), the fortüne-Program of the University of Tübingen (2422-0-0 and 2452-0-0), and the Basque GovernmentScienceProgram(EXOTEK:KK2016/00083). NIL was supported by the Basque Government’s scholarship for predoctoral students

    Generating Interpretable Fuzzy Controllers using Particle Swarm Optimization and Genetic Programming

    Full text link
    Autonomously training interpretable control strategies, called policies, using pre-existing plant trajectory data is of great interest in industrial applications. Fuzzy controllers have been used in industry for decades as interpretable and efficient system controllers. In this study, we introduce a fuzzy genetic programming (GP) approach called fuzzy GP reinforcement learning (FGPRL) that can select the relevant state features, determine the size of the required fuzzy rule set, and automatically adjust all the controller parameters simultaneously. Each GP individual's fitness is computed using model-based batch reinforcement learning (RL), which first trains a model using available system samples and subsequently performs Monte Carlo rollouts to predict each policy candidate's performance. We compare FGPRL to an extended version of a related method called fuzzy particle swarm reinforcement learning (FPSRL), which uses swarm intelligence to tune the fuzzy policy parameters. Experiments using an industrial benchmark show that FGPRL is able to autonomously learn interpretable fuzzy policies with high control performance.Comment: Accepted at Genetic and Evolutionary Computation Conference 2018 (GECCO '18

    The type N Karlhede bound is sharp

    Full text link
    We present a family of four-dimensional Lorentzian manifolds whose invariant classification requires the seventh covariant derivative of the curvature tensor. The spacetimes in questions are null radiation, type N solutions on an anti-de Sitter background. The large order of the bound is due to the fact that these spacetimes are properly CH2CH_2, i.e., curvature homogeneous of order 2 but non-homogeneous. This means that tetrad components of R,R,(2)RR, \nabla R, \nabla^{(2)}R are constant, and that essential coordinates first appear as components of (3)R\nabla^{(3)}R. Covariant derivatives of orders 4,5,6 yield one additional invariant each, and (7)R\nabla^{(7)}R is needed for invariant classification. Thus, our class proves that the bound of 7 on the order of the covariant derivative, first established by Karlhede, is sharp. Our finding corrects an outstanding assertion that invariant classification of four-dimensional Lorentzian manifolds requires at most (6)R\nabla^{(6)}R.Comment: 7 pages, typos corrected, added citation and acknowledgemen

    An intrinsic state for an extended version of the interacting boson model

    Get PDF
    An intrinsic-state formalism for IBM-4 is presented. A basis of deformed bosons is introduced which allows the construction of a general trial wave function which has Wigner's spin-isospin SU(4) symmetry as a particular limit. Intrinsic-state calculations are compared with exact ones showing good agreement.Comment: 12 pages, TeX (ReVTeX). Content changed. Accepted in Phys. Rev.

    Anharmonic double-phonon excitations in the interacting boson model

    Get PDF
    Double-γ\gamma vibrations in deformed nuclei are analyzed in the context of the interacting boson model. A simple extension of the original version of the model towards higher-order interactions is required to explain the observed anharmonicities of nuclear vibrations. The influence of three- and four-body interactions on the moments of inertia of ground- and γ\gamma-bands, and on the relative position of single-γ\gamma and double-γ\gamma bands is studied in detail. As an example of a realistic calculation, spectra and transitions of the highly γ\gamma-anharmonic nuclei 164^{164}Dy, 166^{166}Er, and 168^{168}Er are interpreted in this approach.Comment: 38 pages, TeX (ReVTeX). 15 ps figures. Submitted to Phys. Rev.

    Equivariant log concavity and representation stability

    Get PDF
    We expand upon the notion of equivariant log concavity, and make equivariant log concavity conjectures for Orlik--Solomon algebras of matroids, Cordovil algebras of oriented matroids, and Orlik--Terao algebras of hyperplane arrangements. In the case of the Coxeter arrangement for the Lie algebra sln\mathfrak{sl}_n, we exploit the theory of representation stability to give computer assisted proofs of these conjectures in low degree

    A deconstruction of Cox’s proportional hazards model and an inquiry into its ability to predict the outcome of Chapter 11 bankruptcy proceedings

    Get PDF
    Set against the backdrop of Chapter 11 proceedings in the United States, a specification of Cox’s proportional hazards model proposed by Partington, Stevenson, Russel and Torbey (2001) was examined for its stability over time. Faced with findings of instability consistent with those of Wong, Partington, Stevenson and Torbey (2007), the model was respecified to only include two firm-specific covariates (capturing firm size and earnings) and a time-dependent market-wide covariate. A ‘calendar-time model’ was then introduced to enable analysis of the firm-specific covariates in abstraction from the systematic effects of time. With such effects controlled for, the suggestion was made that any remnant instability in the model was a result of non-systematic factors reflecting the changing nature of firms which filed for Chapter 11 protection during the period examined.Discipline of Financ

    Spin-orbit induced mixed-spin ground state in RRNiO3_3 perovskites probed by XAS: new insight into the metal to insulator transition

    Get PDF
    We report on a Ni L2,3_{2,3} edges x-ray absorption spectroscopy (XAS) study in RRNiO3_3 perovskites. These compounds exhibit a metal to insulator (MIMI) transition as temperature decreases. The L3_{3} edge presents a clear splitting in the insulating state, associated to a less hybridized ground state. Using charge transfer multiplet calculations, we establish the importance of the crystal field and 3d spin-orbit coupling to create a mixed-spin ground state. We explain the MIMI transition in RRNiO3_3 perovskites in terms of modifications in the Ni3+^{3+} crystal field splitting that induces a spin transition from an essentially low-spin (LS) to a mixed-spin state.Comment: 4 pages, 4 figures, accepted as PRB - Rapid Comm. Dez. 200
    corecore