18 research outputs found
Is subarctic forest advance able to keep pace with climate change?
Recent climate warming and scenarios for further warming have led to expectations of rapid movement of ecological boundaries. Here we focus on the circumarctic forest-tundra ecotone (FTE), which represents an important bioclimatic zone with feedbacks from forest advance and corresponding tundra disappearance (up to 50% loss predicted this century) driving widespread ecological and climatic changes. We address FTE advance and climate history relations over the 20th century, using FTE response data from 151 sites across the circumarctic area and site-specific climate data. Specifically, we investigate spatial uniformity of FTE advance, statistical associations with 20th century climate trends, and whether advance rates match climate change velocities (CCVs). Study sites diverged into four regions (Eastern Canada; Central and Western Canada and Alaska; Siberia; and Western Eurasia) based on their climate history, although all were characterized by similar qualitative patterns of behaviour (with about half of the sites showing advancing behaviour). The main associations between climate trend variables and behaviour indicate the importance of precipitation rather than temperature for both qualitative and quantitative behaviours, and the importance of non-growing season as well as growing season months. Poleward latitudinal advance rates differed significantly among regions, being smallest in Eastern Canada (~10Â m/year) and largest in Western Eurasia (~100Â m/year). These rates were 1-2 orders of magnitude smaller than expected if vegetation distribution remained in equilibrium with climate. The many biotic and abiotic factors influencing FTE behaviour make poleward advance rates matching predicted 21st century CCVs (~103 -104 Â m/year) unlikely. The lack of empirical evidence for swift forest relocation and the discrepancy between CCV and FTE response contradict equilibrium model-based assumptions and warrant caution when assessing global-change-related biotic and abiotic implications, including land-atmosphere feedbacks and carbon sequestration.Funding was provided by the Norwegian Research Council (grants 176065/S30, 185023/S50, 160022/F40 and 244557/RI), the Government of Canada Program for International Polar Year, the US National Science Foundation, and the University of Cambridge
Data-driven competitive facilitative tree interactions and their implications on nature-based solutions
Spatio-temporal data are more ubiquitous and richer than even before and the availability of such data poses great challenges in data analytics. Ecological facilitation, the positive effect of density of individuals on the individual's survival across a stress gradient, is a complex phenomenon. A large number of tree individuals coupled with soil moisture, temperature, and water stress data across a long temporal period were followed. Data-driven analysis in the absence of hypothesis was performed. Information theoretic analysis of multiple statistical models was employed in order to quantify the best data-driven index of vegetation density and spatial scale of interactions. Sequentially, tree survival was quantified as a function of the size of the individual, vegetation density, and time at the optimal spatial interaction scale. Land surface temperature and soil moisture were also statistically explained by tree size, density, and time. Results indicated that in space both facilitation and competition co-exist in the same ecosystem and the sign and magnitude of this depend on the spatial scale. Overall, within the optimal data-driven spatial scale, tree survival was best explained by the interaction between density and year, sifting overall from facilitation to competition through time. However, small sized trees were always facilitated by increased densities, while large sized trees had either negative or no density effects. Tree size was more important predictor than density in survival and this has implications for nature-based solutions: maintaining large tree individuals or planting species that can become large-sized can safeguard against tree-less areas by promoting survival at long time periods through harsh environmental conditions. Large trees had also a significant effect in moderating land surface temperature and this effect was higher than the one of vegetation density on temperature
Molecular cytogenetic organization of polytene chromosomes
The results of the works carried out in the Laboratory of Molecular Cytogenetics (Institute of Cytology and Genetics of Siberian Branch of the RAS, Novosibirsk) devoted to the molecular genetic analysis of main units of polytene chromosomes,*(1) bands, interbands, and puffs, as well as intercalary and pericentric heterochromatin,*(2) are summarized. The results are discussed in terms of the dynamic model of organization of polytene chromosomes