614 research outputs found

    Dynamic modelling to predict the likelihood of plant species persisting in fragmented landscapes in the face of climate change

    Get PDF
    Many species are threatened by global climate change, but plants are particularly vulnerable because, as sessile organisms, they are unable to move to areas with more suitable conditions as the climate changes. Instead they must rely on their seeds dispersing far and often to keep pace with a changing climate. This problem is exacerbated by the fragmentation of natural landscapes by clearing for agricultural or urban development, or similarly by a species requirement for particular soil types or topography. Models can help predict how different species will be affected by climate change. Most previous modelling work on predicting the persistence of plant and other species under climate change has been static, regression style modelling, known as climate envelope modelling. This has focussed on predicting where suitable environments for a species will likely occur under possible future climatic conditions, based on the species’ distribution under current conditions. While the existence of suitable environments in a new climate is a necessary condition for a species’ persistence, for sessile organisms such as plants, the ability of a species to move and colonise these suitable environments is also likely to be a major limitation. There is therefore a need for models that account for the dynamic processes involved in plant species’ migration and colonisation in changing climates. This paper presents such a dynamic model, called PPunCC (Plant Persistence under Climate Change). We describe how the PPunCC model represents the important factors and processes likely to affect a plant species’ capacity to migrate across a landscape fast enough to keep pace with a changing climate, such as the rate of climate change, the degree of landscape fragmentation, and the plant species’ life history, seed production, dispersal, and establishment. We also discuss how the model could be used to inform management decisions regarding adaptation options such as assisted migration or the creation of large-scale corridors that increase the connectivity of fragmented landscapes in order to help species migrate naturally and find suitable environments in new climates

    Threats to biodiversity from cumulative human impacts in one of North America's last wildlife frontiers

    Get PDF
    Land‐use change is the largest proximate threat to biodiversity yet remains one of the most complex to manage. In British Columbia (BC), where large mammals roam extensive tracts of intact habitat, continued land‐use development is of global concern. Extant mammal diversity in BC is unrivalled in North America owing, in part, to its unique position at the intersection of alpine, boreal, and temperate biomes. Despite high conservation values, understanding of cumulative ecological impacts from human development is limited. Using cumulative‐effects‐assessment (CEA) methods, we assessed the current human footprint over 16 regional ecosystems and 7 large mammal species. Using historical and current range estimates of the mammals, we investigated impacts of human land use on species’ persistence. For ecosystems, we found that bunchgrass, coastal Douglas fir, and ponderosa pine have been subjected to over 50% land‐use conversion, and over 85% of their spatial extent has undergone either direct or estimated indirect impacts. Of the mammals we considered, wolves were the least affected by land conversion, yet all species had reduced ranges compared with historical estimates. We found evidence of a hard trade‐off between development and conservation, most clearly for mammals with large distributions and ecosystems with high levels of conversion. Rather than serve as a platform to monitor species decline, we strongly advocate these data be used to inform land‐use planning and to assess current conservation efforts. More generally, CEAs offer a robust tool to inform wildlife and habitat conservation at scale

    Timing of Millisecond Pulsars in NGC 6752: Evidence for a High Mass-to-Light Ratio in the Cluster Core

    Get PDF
    Using pulse timing observations we have obtained precise parameters, including positions with about 20 mas accuracy, of five millisecond pulsars in NGC 6752. Three of them, located relatively close to the cluster center, have line-of-sight accelerations larger than the maximum value predicted by the central mass density derived from optical observation, providing dynamical evidence for a central mass-to-light ratio >~ 10, much higher than for any other globular cluster. It is likely that the other two millisecond pulsars have been ejected out of the core to their present locations at 1.4 and 3.3 half-mass radii, respectively, suggesting unusual non-thermal dynamics in the cluster core.Comment: Accepted by ApJ Letter. 5 pages, 2 figures, 1 tabl

    Interprofessional clinical placement involving speech pathology and counselling psychology

    Get PDF
    This paper examines the interprofessional learning of a speech pathology and counselling psychology student in an interprofessional placement within an institution of the Department of Corrective Services in Perth, Western Australia. The institution is a pre-release centre that promotes rehabilitation and community reintegration in which up to six women are able to have their children, aged 0–4 years of age, live with them. The students provided a program to the mothers to facilitate development of a healthy mother–child relationship and the children’s communication development. This paper utilised qualitative descriptive analysis to explore two examples of student learning and found perceived growth in the students’ clinical skills, their understanding of the other profession and the concept of interprofessional collaboration. While students experience growth in a range of placements, the journey described in this paper is unusual in both the nature of the student collaboration and the placement itself. The research highlights the importance of joint clinical placements in the development of interprofessional collaborative relationships

    Interprofessional clinical placement involving speech pathology and counselling psychology

    Get PDF
    This paper examines the interprofessional learning of a speech pathology and counselling psychology student in an interprofessional placement within an institution of the Department of Corrective Services in Perth, Western Australia. The institution is a pre-release centre that promotes rehabilitation and community reintegration in which up to six women are able to have their children, aged 0–4 years of age, live with them. The students provided a program to the mothers to facilitate development of a healthy mother–child relationship and the children’s communication development. This paper utilised qualitative descriptive analysis to explore two examples of student learning and found perceived growth in the students’ clinical skills, their understanding of the other profession and the concept of interprofessional collaboration. While students experience growth in a range of placements, the journey described in this paper is unusual in both the nature of the student collaboration and the placement itself. The research highlights the importance of joint clinical placements in the development of interprofessional collaborative relationships

    Ten years of pulling: Ecosystem recovery after long‐term weed management in Garry oak savanna

    Get PDF
    Ecosystem restoration is the practice of assisting recovery in degraded ecological communities. The aims of restoration are typically broad, involving the reinstatement of composition, structure, function, and resilience to disturbances. One common restoration tactic in degraded urban systems is to control invasive species, relying on passive restoration for further ecosystem‐level recovery. Here, we test whether this is an effective restoration strategy in Garry oak savanna, a highly threatened and ecologically important community in the North American Pacific Northwest. In urban savanna patches surrounding Victoria, British Columbia, community members have been actively removing aggressive invasive exotic species for over a decade. Based on vegetation surveys from 2007, we tested ecosystem changes in structure, composition, and resilience (i.e., functional redundancy and response diversity) across 10 years of varied management levels. We expected higher levels of invasive species management would correspond with improvements to these ecosystem metrics. However, management explained little of the patterns found over the 10‐year‐period. Woody encroachment was a complicated process of native and exotic invasion, while resilience and compositional changes were most closely tied with landscape connectivity. Thus, though invasive species management may prevent further degradation, active restoration strategies after removal are likely required for recovery of the ecosystem

    PSR J1016-5857: a young radio pulsar with possible supernova remnant, X-ray, and gamma-ray associations

    Full text link
    We report the discovery of a young and energetic pulsar in the Parkes multibeam survey of the Galactic plane. PSR J1016-5857 has a rotation period of 107 ms and period derivative of 8e-14, implying a characteristic age of 21 kyr and spin-down luminosity of 2.6e36 erg/s. The pulsar is located just outside, and possibly interacting with, the shell supernova remnant G284.3-1.8. Archival X-ray data show a source near the pulsar position which is consistent with emission from a pulsar wind nebula. The pulsar is also located inside the error box of the unidentified EGRET source 3EG J1013-5915, for which it represents a plausible counterpart.Comment: 5 pages, 3 included figures, accepted for publication by ApJ Letter

    Discovery of Five Binary Radio Pulsars

    Get PDF
    We report on five binary pulsars discovered in the Parkes multibeam Galactic plane survey. All of the pulsars are old, with characteristic ages 1-11 Gyr, and have relatively small inferred magnetic fields, 5-90e8 G. The orbital periods range from 1.3 to 15 days. As a group these objects differ from the usual low-mass binary pulsars (LMBPs): their spin periods of 9-88 ms are relatively long; their companion masses, 0.2-1.1 Msun, are, in at least some cases, suggestive of CO or more massive white dwarfs; and some of the orbital eccentricities, 1e-5 < e < 0.002, are unexpectedly large. We argue that these observed characteristics reflect binary evolution that is significantly different from that of LMBPs. We also note that intermediate-mass binary pulsars apparently have a smaller scale-height than LMBPs.Comment: 5 pages, 4 embedded EPS figs, accepted for publication by ApJ Letter

    TEMPO2, a new pulsar timing package. I: Overview

    Full text link
    Contemporary pulsar timing experiments have reached a sensitivity level where systematic errors introduced by existing analysis procedures are limiting the achievable science. We have developed tempo2, a new pulsar timing package that contains propagation and other relevant effects implemented at the 1ns level of precision (a factor of ~100 more precise than previously obtainable). In contrast with earlier timing packages, tempo2 is compliant with the general relativistic framework of the IAU 1991 and 2000 resolutions and hence uses the International Celestial Reference System, Barycentric Coordinate Time and up-to-date precession, nutation and polar motion models. Tempo2 provides a generic and extensible set of tools to aid in the analysis and visualisation of pulsar timing data. We provide an overview of the timing model, its accuracy and differences relative to earlier work. We also present a new scheme for predictive use of the timing model that removes existing processing artifacts by properly modelling the frequency dependence of pulse phase.Comment: Accepted by MNRA
    • 

    corecore