Modelling and Simulation Society of Australia and New Zealand Inc.
Abstract
Many species are threatened by global climate change, but plants are particularly vulnerable because, as sessile organisms, they are unable to move to areas with more suitable conditions as the climate changes. Instead they must rely on their seeds dispersing far and often to keep pace with a changing climate. This problem is exacerbated by the fragmentation of natural landscapes by clearing for agricultural or urban development, or similarly by a species requirement for particular soil types or topography.
Models can help predict how different species will be affected by climate change. Most previous modelling work on predicting the persistence of plant and other species under climate change has been static, regression style modelling, known as climate envelope modelling. This has focussed on predicting where suitable environments for a species will likely occur under possible future climatic conditions, based on the species’ distribution under current conditions. While the existence of suitable environments in a new climate is a necessary condition for a species’ persistence, for sessile organisms such as plants, the ability of a species to move and colonise these suitable environments is also likely to be a major limitation. There is therefore a need for models that account for the dynamic processes involved in plant species’ migration and colonisation in changing climates.
This paper presents such a dynamic model, called PPunCC (Plant Persistence under Climate Change). We describe how the PPunCC model represents the important factors and processes likely to affect a plant species’ capacity to migrate across a landscape fast enough to keep pace with a changing climate, such as the rate of climate change, the degree of landscape fragmentation, and the plant species’ life history, seed production, dispersal, and establishment. We also discuss how the model could be used to inform management decisions regarding adaptation options such as assisted migration or the creation of large-scale corridors that increase the connectivity of fragmented landscapes in order to help species migrate naturally and find suitable environments in new climates