853 research outputs found

    GPR Monitoring of Volumetric Water Content in Soils Applied to Highway Construction and Maintenance

    Get PDF
    An overview is given on two experiments, a controlled pit study and a transportation application in subasphalt soils. Both experiments show that common-offset ground-penetrating radar (GPR) reflection data can be used to estimate θv to a high degree of accuracy. The methodology developed in these two experiments provides a technique for obtaining quick, noninvasive, accurate, and high-resolution estimates of θv

    Field-Scale Estimation of Volumetric Water Content Using Ground-Penetrating Radar Ground Wave Techniques

    Get PDF
    Ground-penetrating radar (GPR) ground wave techniques were applied to estimate soil water content in the uppermost ∼10 cm of a 3 acre California vineyard several times over 1 year. We collected densely spaced GPR travel time measurements using 900 and 450 MHz antennas and analyzed these data to estimate water content. The spatial distribution of water content across the vineyard did not change significantly with time, although the absolute water content values varied seasonally and with irrigation. The GPR estimates of water content were compared to gravimetric water content, time domain reflectometry, and soil texture measurements. The comparisons of GPR-derived estimates of water content to gravimetric water content measurements showed that the GPR estimates had a root mean square error of volumetric water content of the order of 0.01. The results from this study indicate that GPR ground waves can be used to provide noninvasive, spatially dense estimates of shallow water content over large areas and in a rapid manner

    Mapping the Volumetric Soil Water Content of a California Vineyard Using High-Frequency GPR Ground Wave Data

    Get PDF
    An attempt was made to establish the utility of ground-penetrating radar (GPR) as a quick and noninvasive field tool for shallow soil water content estimates as a function of space and time. Initially, detailed studies of collocated data, with electromagnetic velocity estimates from GPR data compared to gravimetric measurements of water content and to soil testure were carried out. Using the procedures developed during the detailed studies, full grids of GPR data were collected over the entire site several times. Data obtained indicate that incorporation of multiple frequency GPR grids can provide high-resolution estimates of soil water content variations as a function of depth as well as space and time

    Characterization of Soil Water Content Variability and Soil Texture Using GPR Groundwave Techniques

    Get PDF
    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture measurements showed that geophysically-derived estimates of soil water content could be used to improve spatial estimation of soil texture

    Regression of advanced melanoma upon withdrawal of immunosuppression: case series and literature review

    Get PDF
    We report two cases of stage IV malignant melanoma arising in patients treated with azathioprine for myasthenia gravis. In both cases, the melanoma metastases regressed upon withdrawal of immunosuppression. One patient remains melanoma free at 10 years, and the second patient experienced an 18-month disease free period. There is one prior case report in the medical literature to support full immune reconstitution for treatment in advanced immunosuppression-related melanoma, and one case series suggesting that transplant patients developing melanoma may benefit from a switch to sirolimus. Virtually, no data exist for the medical management of early stage melanoma in the immunosuppressed patients. We review the limited preclinical data in support of immune reconstitution and the data on immunosuppression as a risk factor for melanoma. We conclude that reduction or withdrawal of immunosuppression may be beneficial in patients with advanced stage melanoma and warrants further consideration in patients with early stage melanoma

    Far infrared mapping of three Galactic star forming regions : W3(OH), S 209 & S 187

    Get PDF
    Three Galactic star forming regions associated with W3(OH), S209 and S187 have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands centered at ~ 140 and 200 micron using the TIFR 100 cm balloon borne FIR telescope. These maps show extended FIR emission with structures. The HIRES processed IRAS maps of these regions at 12, 25, 60 & 100 micron have also been presented for comparison. Point-like sources have been extracted from the longest waveband TIFR maps and searched for associations in the other five bands. The diffuse emission from these regions have been quantified, which turns out to be a significant fraction of the total emission. The spatial distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209), has been determined reliably from the maps in TIFR bands. The dust temperature and optical depth maps show complex morphology. In general the dust around S209 has been found to be warmer than that in W3(OH) region.Comment: Accepted for publication in Journal of Astrophysics and Astronomy (20 pages including 8 figures & 3 tables

    An excess of emission in the dark cloud LDN 1111 with the Arcminute Microkelvin Imager

    Full text link
    We present observations of the Lynds' dark nebula LDN 1111 made at microwave frequencies between 14.6 and 17.2 GHz with the Arcminute Microkelvin Imager (AMI). We find emission in this frequency band in excess of a thermal free--free spectrum extrapolated from data at 1.4 GHz with matched uv-coverage. This excess is > 15 sigma above the predicted emission. We fit the measured spectrum using the spinning dust model of Drain & Lazarian (1998a) and find the best fitting model parameters agree well with those derived from Scuba data for this object by Visser et al. (2001).Comment: accepted MNRA

    Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive molecular analysis

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is endemic in regions of sub-Saharan Africa (SSA), where it is the third most common cancer. Here, we describe whole-exome tumor/normal sequencing and RNA transcriptomic analysis of 59 patients with ESCC in Malawi. We observed similar genetic aberrations as reported in Asian and North American cohorts, including mutations of TP53, CDKN2A, NFE2L2, CHEK2, NOTCH1, FAT1, and FBXW7. Analyses for nonhuman sequences did not reveal evidence for infection with HPV or other occult pathogens. Mutational signature analysis revealed common signatures associated with aging, cytidine deaminase activity (APOBEC), and a third signature of unknown origin, but signatures of inhaled tobacco use, aflatoxin and mismatch repair were notably absent. Based on RNA expression analysis, ESCC could be divided into 3 distinct subtypes, which were distinguished by their expression of cell cycle and neural transcripts. This study demonstrates discrete subtypes of ESCC in SSA, and suggests that the endemic nature of this disease reflects exposure to a carcinogen other than tobacco and oncogenic viruses

    Ionized gas, molecules, and dust in Sh2-132

    Get PDF
    We analyze the various interstellar components of the HII region Sh2-132. The main stellar source is the double binary system that includes the Wolf-Rayet star WR153ab. We use radio continuum images at 408 and 1420 MHz, and HI 21cm line data taken from the Canadian Galactic Plane Survey, molecular observations of the 12CO(1-0) line at 115 GHz from the Five College Radio Astronomy Observatory, and available mid and far IR observations obtained with the MSX and IRAS satellites, respectively. Sh2-132 is composed of two shells showing radio continuum counterparts at both frequencies. The emission is thermal in nature. The estimated rms electron density and ionized mass of the nebula are n_e = 20 cm^{-3} and M_HII = 1500 Mo. The distribution of the CO emission shows molecular gas bordering the ionized nebula and interacting with it. The velocities of the molecular gas is in the range --38 to --53 km/s, similar to the velocity of the ionized gas. The emission at 8.3 mic. reveals a ring like feature of about 15' that encircles the bright optical regions. This emission is due to the PAHs and marks the location of photodissociation regions. The gas distribution in the environs of Sh2-132 can be explained in a scenario where the massive stars in the region photodissociated, ionized, and swept-up the dense molecular material from the parental cloud through their strong stellar winds and intense UV photon flux.Comment: 11 figures and 5 tables, accepted in MNRA
    corecore