406 research outputs found

    Local Guarantees in Graph Cuts and Clustering

    Full text link
    Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min sts-t Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled ++ or - and the goal is to produce a clustering that agrees with the labels as much as possible: ++ edges within clusters and - edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max sts-t Cut: find an sts-t cut minimizing the largest number of cut edges incident on any node. We present the following results: (1)(1) an O(n)O(\sqrt{n})-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), (2)(2) a remarkably simple 77-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 4848), and (3)(3) a 1/(2+ε)1/(2+\varepsilon)-approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the 1/(4+ε)1/(4+\varepsilon)-approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games

    Imaging and phase-locking of non-linear spin waves

    Get PDF
    Non-linear processes are a key feature in the emerging field of spin-wave based information processing and allow to convert uniform spin-wave excitations into propagating modes at different frequencies. Recently, the existence of non-linear magnons at half-integer multiples of the driving frequency has been predicted for Ni80Fe20 at low bias fields. However, it is an open question under which conditions such non-linear spin waves emerge coherently and how they may be used in device structures. Usually non-linear processes are explored in the small modulation regime and result in the well known three and four magnon scattering processes. Here we demonstrate and image a class of spin waves oscillating at half-integer harmonics that have only recently been proposed for the strong modulation regime. The direct imaging of these parametrically generated magnons in Ni80Fe20 elements allows to visualize their wave vectors. In addition, we demonstrate the presence of two degenerate phase states that may be selected by external phase-locking. These results open new possibilities for applications such as spin-wave sources, amplifiers and phase-encoded information processing with magnons

    Mutual effects of fine particulate matter, nitrogen dioxide, and fireworks on cause-specific acute cardiovascular mortality: a case-crossover study in communities affected by aircraft noise

    Get PDF
    Ambient air pollution is the leading cause of environmental mortality and morbidity worldwide. However, the individual contributions to acute mortality of traffic-related air pollutants such as nitrogen dioxide (NO2) and fine particulate matter (PM2.5) are still debated. We conducted a time-stratified case-crossover study for a population located around Zurich airport in Switzerland, including 24,886 adult cardiovascular deaths from the Swiss National Cohort. We estimated the risk of cause-specific cardiovascular mortality associated with daily NO2 and PM2.5 concentrations at home using distributed lag models up to 7 days preceding death, adjusted for daily temperature, precipitation, acute night-time aircraft noise, firework celebrations, and holidays. Cardiovascular mortality was associated with NO2, whereas the association with PM2.5 disappeared upon adjustment for NO2. The strongest association was observed between NO2 and ischemic stroke mortality (odds ratio = 1.55 per 10 mug/m(3), 95% confidence intervals = 1.20-2.00). Cause-specific mortality analyses showed differences in terms of delayed effect: odds ratios were highest at 1-3 days after exposure for most outcomes but at lags of 3-5 days for heart failure. Individual vulnerabilities to NO2 associated cardiovascular mortality also varied by cause of death, possibly highlighting the role of different behaviours and risk factors in the most susceptible groups. The risk of cardiovascular mortality was also increased on firework days and after public holidays, independent from NO2 and PM2.5 concentrations. This study confirms the association between ambient NO2, as a marker for primary emissions, and acute cardiovascular mortality in a specific setting around a major airport. Future research should clarify the role of additional air pollutants including ultra-fine particles on cardiovascular diseases to inform most efficient control measures

    Faraday-shielded, DC Stark-free optical lattice clock

    Full text link
    We demonstrate the absence of a DC Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the DC Stark shift at the 102010^{-20} level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel non-zero DC Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of DC Stark shifts in optical lattice clocks.Comment: 5 pages + supplemental material; accepted to PR

    Voltage-programmable liquid optical interface

    Get PDF
    Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers, that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices

    Novel Gene Acquisition on Carnivore Y Chromosomes

    Get PDF
    Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced). We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority

    NAA10 polyadenylation signal variants cause syndromic microphthalmia

    Get PDF
    Background A single variant in NAA10 (c.471+2T>A), the gene encoding N-acetyltransferase 10, has been associated with Lenz microphthalmia syndrome. In this study, we aimed to identify causative variants in families with syndromic X-linked microphthalmia.Methods Three families, including 15 affected individuals with syndromic X-linked microphthalmia, underwent analyses including linkage analysis, exome sequencing and targeted gene sequencing. The consequences of two identified variants in NAA10 were evaluated using quantitative PCR and RNAseq.Results Genetic linkage analysis in family 1 supported a candidate region on Xq27-q28, which included NAA10. Exome sequencing identified a hemizygous NAA10 polyadenylation signal (PAS) variant, chrX:153,195,397T>C, c.*43A>G, which segregated with the disease. Targeted sequencing of affected males from families 2 and 3 identified distinct NAA10 PAS variants, chrX:g.153,195,401T>C, c.*39A>G and chrX:g.153,195,400T>C, c.*40A>G. All three variants were absent from gnomAD. Quantitative PCR and RNAseq showed reduced NAA10 mRNA levels and abnormal 3′ UTRs in affected individuals. Targeted sequencing of NAA10 in 376 additional affected individuals failed to identify variants in the PAS.Conclusion These data show that PAS variants are the most common variant type in NAA10-associated syndromic microphthalmia, suggesting reduced RNA is the molecular mechanism by which these alterations cause microphthalmia/anophthalmia. We reviewed recognised variants in PAS associated with Mendelian disorders and identified only 23 others, indicating that NAA10 harbours more than 10% of all known PAS variants. We hypothesise that PAS in other genes harbour unrecognised pathogenic variants associated with Mendelian disorders. The systematic interrogation of PAS could improve genetic testing yi
    corecore